Multisensory calibration is independent of cue reliability

Adam Zaidel, Amanda H. Turner, Dora Angelaki

Research output: Contribution to journalArticle

Abstract

Multisensory calibration is fundamental for proficient interaction within a changing environment. Initial studies suggested a visualdominant mechanism. More recently, a cue-reliability-based model, similar to optimal cue integration, has been proposed. However, a more general, reliability-independent model of fixed-ratio adaptation (of which visual dominance is a subcase) has never been tested. Here, we studied behavior of both humans and monkeys performing a heading-discrimination task. Subjects were presented with either visual (optic-flow), vestibular (motion-platform), or combined (visual-vestibular) stimuli and required to report whether self-motion was to the right/left of straight ahead. A systematic heading discrepancy was introduced between the visual and vestibular cues, without external feedback. Cue calibration was measured by the resulting sensory adaptation. Both visual and vestibular cues significantly adapted in the direction required to reduce cue conflict. However, unlike multisensory cue integration, cue calibration was not reliability based. Rather, a model of fixed-ratio adaptation best described the data, whereby vestibular adaptation was greater than visual adaptation, regardless of relative cue reliability. The average ratio of vestibular to visual adaptation was 1.75 and 2.30 for the human and monkey data, respectively. Furthermore, only through modeling fixed-ratio adaptation (using the ratio extracted from the data) were we able to account for reliability-based cue integration during the adaptation process. The finding that cue calibration does not depend on cue reliability is consistent with the notion that it follows an underlying estimate of cue accuracy. Cue accuracy is generally independent of cue reliability, and its estimate may change with a much slower time constant. Thus, greater vestibular versus visual (fixed-ratio) adaptation suggests lower vestibular versus visual cue accuracy.

Original languageEnglish (US)
Pages (from-to)13949-13962
Number of pages14
JournalJournal of Neuroscience
Volume31
Issue number39
DOIs
StatePublished - Sep 28 2011

Fingerprint

Calibration
Cues
Haplorhini
Optic Flow
Self Report

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Multisensory calibration is independent of cue reliability. / Zaidel, Adam; Turner, Amanda H.; Angelaki, Dora.

In: Journal of Neuroscience, Vol. 31, No. 39, 28.09.2011, p. 13949-13962.

Research output: Contribution to journalArticle

Zaidel, Adam ; Turner, Amanda H. ; Angelaki, Dora. / Multisensory calibration is independent of cue reliability. In: Journal of Neuroscience. 2011 ; Vol. 31, No. 39. pp. 13949-13962.
@article{b053c45ffe21418a966a7b484a48138f,
title = "Multisensory calibration is independent of cue reliability",
abstract = "Multisensory calibration is fundamental for proficient interaction within a changing environment. Initial studies suggested a visualdominant mechanism. More recently, a cue-reliability-based model, similar to optimal cue integration, has been proposed. However, a more general, reliability-independent model of fixed-ratio adaptation (of which visual dominance is a subcase) has never been tested. Here, we studied behavior of both humans and monkeys performing a heading-discrimination task. Subjects were presented with either visual (optic-flow), vestibular (motion-platform), or combined (visual-vestibular) stimuli and required to report whether self-motion was to the right/left of straight ahead. A systematic heading discrepancy was introduced between the visual and vestibular cues, without external feedback. Cue calibration was measured by the resulting sensory adaptation. Both visual and vestibular cues significantly adapted in the direction required to reduce cue conflict. However, unlike multisensory cue integration, cue calibration was not reliability based. Rather, a model of fixed-ratio adaptation best described the data, whereby vestibular adaptation was greater than visual adaptation, regardless of relative cue reliability. The average ratio of vestibular to visual adaptation was 1.75 and 2.30 for the human and monkey data, respectively. Furthermore, only through modeling fixed-ratio adaptation (using the ratio extracted from the data) were we able to account for reliability-based cue integration during the adaptation process. The finding that cue calibration does not depend on cue reliability is consistent with the notion that it follows an underlying estimate of cue accuracy. Cue accuracy is generally independent of cue reliability, and its estimate may change with a much slower time constant. Thus, greater vestibular versus visual (fixed-ratio) adaptation suggests lower vestibular versus visual cue accuracy.",
author = "Adam Zaidel and Turner, {Amanda H.} and Dora Angelaki",
year = "2011",
month = "9",
day = "28",
doi = "10.1523/JNEUROSCI.2732-11.2011",
language = "English (US)",
volume = "31",
pages = "13949--13962",
journal = "Journal of Neuroscience",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "39",

}

TY - JOUR

T1 - Multisensory calibration is independent of cue reliability

AU - Zaidel, Adam

AU - Turner, Amanda H.

AU - Angelaki, Dora

PY - 2011/9/28

Y1 - 2011/9/28

N2 - Multisensory calibration is fundamental for proficient interaction within a changing environment. Initial studies suggested a visualdominant mechanism. More recently, a cue-reliability-based model, similar to optimal cue integration, has been proposed. However, a more general, reliability-independent model of fixed-ratio adaptation (of which visual dominance is a subcase) has never been tested. Here, we studied behavior of both humans and monkeys performing a heading-discrimination task. Subjects were presented with either visual (optic-flow), vestibular (motion-platform), or combined (visual-vestibular) stimuli and required to report whether self-motion was to the right/left of straight ahead. A systematic heading discrepancy was introduced between the visual and vestibular cues, without external feedback. Cue calibration was measured by the resulting sensory adaptation. Both visual and vestibular cues significantly adapted in the direction required to reduce cue conflict. However, unlike multisensory cue integration, cue calibration was not reliability based. Rather, a model of fixed-ratio adaptation best described the data, whereby vestibular adaptation was greater than visual adaptation, regardless of relative cue reliability. The average ratio of vestibular to visual adaptation was 1.75 and 2.30 for the human and monkey data, respectively. Furthermore, only through modeling fixed-ratio adaptation (using the ratio extracted from the data) were we able to account for reliability-based cue integration during the adaptation process. The finding that cue calibration does not depend on cue reliability is consistent with the notion that it follows an underlying estimate of cue accuracy. Cue accuracy is generally independent of cue reliability, and its estimate may change with a much slower time constant. Thus, greater vestibular versus visual (fixed-ratio) adaptation suggests lower vestibular versus visual cue accuracy.

AB - Multisensory calibration is fundamental for proficient interaction within a changing environment. Initial studies suggested a visualdominant mechanism. More recently, a cue-reliability-based model, similar to optimal cue integration, has been proposed. However, a more general, reliability-independent model of fixed-ratio adaptation (of which visual dominance is a subcase) has never been tested. Here, we studied behavior of both humans and monkeys performing a heading-discrimination task. Subjects were presented with either visual (optic-flow), vestibular (motion-platform), or combined (visual-vestibular) stimuli and required to report whether self-motion was to the right/left of straight ahead. A systematic heading discrepancy was introduced between the visual and vestibular cues, without external feedback. Cue calibration was measured by the resulting sensory adaptation. Both visual and vestibular cues significantly adapted in the direction required to reduce cue conflict. However, unlike multisensory cue integration, cue calibration was not reliability based. Rather, a model of fixed-ratio adaptation best described the data, whereby vestibular adaptation was greater than visual adaptation, regardless of relative cue reliability. The average ratio of vestibular to visual adaptation was 1.75 and 2.30 for the human and monkey data, respectively. Furthermore, only through modeling fixed-ratio adaptation (using the ratio extracted from the data) were we able to account for reliability-based cue integration during the adaptation process. The finding that cue calibration does not depend on cue reliability is consistent with the notion that it follows an underlying estimate of cue accuracy. Cue accuracy is generally independent of cue reliability, and its estimate may change with a much slower time constant. Thus, greater vestibular versus visual (fixed-ratio) adaptation suggests lower vestibular versus visual cue accuracy.

UR - http://www.scopus.com/inward/record.url?scp=80053225038&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80053225038&partnerID=8YFLogxK

U2 - 10.1523/JNEUROSCI.2732-11.2011

DO - 10.1523/JNEUROSCI.2732-11.2011

M3 - Article

VL - 31

SP - 13949

EP - 13962

JO - Journal of Neuroscience

JF - Journal of Neuroscience

SN - 0270-6474

IS - 39

ER -