More classes of stuck unknotted hexagons

Greg Aloupis, Günter Ewald, Godfried Toussaint

    Research output: Contribution to journalArticle

    Abstract

    Consider a hexagonal unknot with edges of fixed length, for which we allow universal joint motions but do not allow edge crossings. We consider the maximum number of embedding classes that any such unknot may have. Until now, five was a lower bound for this number. Here we show that there exists a hexagonal unknot with at least nine embedding classes.

    Original languageEnglish (US)
    Pages (from-to)429-434
    Number of pages6
    JournalBeitrage zur Algebra und Geometrie
    Volume45
    Issue number2
    StatePublished - Jan 1 2004

    Fingerprint

    Unknot
    Hexagon
    Lower bound
    Motion
    Class

    ASJC Scopus subject areas

    • Algebra and Number Theory
    • Geometry and Topology

    Cite this

    Aloupis, G., Ewald, G., & Toussaint, G. (2004). More classes of stuck unknotted hexagons. Beitrage zur Algebra und Geometrie, 45(2), 429-434.

    More classes of stuck unknotted hexagons. / Aloupis, Greg; Ewald, Günter; Toussaint, Godfried.

    In: Beitrage zur Algebra und Geometrie, Vol. 45, No. 2, 01.01.2004, p. 429-434.

    Research output: Contribution to journalArticle

    Aloupis, G, Ewald, G & Toussaint, G 2004, 'More classes of stuck unknotted hexagons', Beitrage zur Algebra und Geometrie, vol. 45, no. 2, pp. 429-434.
    Aloupis G, Ewald G, Toussaint G. More classes of stuck unknotted hexagons. Beitrage zur Algebra und Geometrie. 2004 Jan 1;45(2):429-434.
    Aloupis, Greg ; Ewald, Günter ; Toussaint, Godfried. / More classes of stuck unknotted hexagons. In: Beitrage zur Algebra und Geometrie. 2004 ; Vol. 45, No. 2. pp. 429-434.
    @article{9aea2bfbea9e4f55a3c6193521a1c967,
    title = "More classes of stuck unknotted hexagons",
    abstract = "Consider a hexagonal unknot with edges of fixed length, for which we allow universal joint motions but do not allow edge crossings. We consider the maximum number of embedding classes that any such unknot may have. Until now, five was a lower bound for this number. Here we show that there exists a hexagonal unknot with at least nine embedding classes.",
    author = "Greg Aloupis and G{\"u}nter Ewald and Godfried Toussaint",
    year = "2004",
    month = "1",
    day = "1",
    language = "English (US)",
    volume = "45",
    pages = "429--434",
    journal = "Beitrage zur Algebra und Geometrie",
    issn = "0138-4821",
    publisher = "Springer Berlin",
    number = "2",

    }

    TY - JOUR

    T1 - More classes of stuck unknotted hexagons

    AU - Aloupis, Greg

    AU - Ewald, Günter

    AU - Toussaint, Godfried

    PY - 2004/1/1

    Y1 - 2004/1/1

    N2 - Consider a hexagonal unknot with edges of fixed length, for which we allow universal joint motions but do not allow edge crossings. We consider the maximum number of embedding classes that any such unknot may have. Until now, five was a lower bound for this number. Here we show that there exists a hexagonal unknot with at least nine embedding classes.

    AB - Consider a hexagonal unknot with edges of fixed length, for which we allow universal joint motions but do not allow edge crossings. We consider the maximum number of embedding classes that any such unknot may have. Until now, five was a lower bound for this number. Here we show that there exists a hexagonal unknot with at least nine embedding classes.

    UR - http://www.scopus.com/inward/record.url?scp=8744288701&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=8744288701&partnerID=8YFLogxK

    M3 - Article

    VL - 45

    SP - 429

    EP - 434

    JO - Beitrage zur Algebra und Geometrie

    JF - Beitrage zur Algebra und Geometrie

    SN - 0138-4821

    IS - 2

    ER -