Modeling transport and interfacial phenomena in a nanowire-based, dye-sensitized solar cell

Andrew Yeckel, Eray Aydil, Jeffrey J. Derby

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A model of charged species transport was used to assess the performance characteristics of a dye-sensitized solar cell. A system in which high surface area at the junction is achieved by immersing an array of ZnO semiconducting nanowires into a bath of lithium-iodide-triiodide electrolyte confined between transparent conducting oxide contacts was considered. Boundary conditions are formulated to represent open and closed circuit cases for both dark and illuminated conditions. Oxidation of iodide at the anode and reduction of triiodide at the cathode were treated using Butler-Volmer kinetics. Voltage-current relationships were then computed to determine the internal resistance of the cell, a critical factor in cell efficiency, as a function of operating conditions and cell geometry. This is an abstract of a paper presented at the 2007 AIChE Annual Meeting (Salt Lake City, UT 11/4-9/2007).

Original languageEnglish (US)
Title of host publication2007 AIChE Annual Meeting
StatePublished - Dec 1 2007
Event2007 AIChE Annual Meeting - Salt Lake City, UT, United States
Duration: Nov 4 2007Nov 9 2007

Other

Other2007 AIChE Annual Meeting
CountryUnited States
CitySalt Lake City, UT
Period11/4/0711/9/07

Fingerprint

Nanowires
Iodides
Anodes
Lithium
Cathodes
Coloring Agents
Electrolytes
Boundary conditions
Oxidation
Kinetics
Oxides
Geometry
Networks (circuits)
Electric potential
Electrodes
Baths
Dye-sensitized solar cells

ASJC Scopus subject areas

  • Biotechnology
  • Chemical Engineering(all)
  • Bioengineering
  • Safety, Risk, Reliability and Quality

Cite this

Modeling transport and interfacial phenomena in a nanowire-based, dye-sensitized solar cell. / Yeckel, Andrew; Aydil, Eray; Derby, Jeffrey J.

2007 AIChE Annual Meeting. 2007.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Yeckel, A, Aydil, E & Derby, JJ 2007, Modeling transport and interfacial phenomena in a nanowire-based, dye-sensitized solar cell. in 2007 AIChE Annual Meeting. 2007 AIChE Annual Meeting, Salt Lake City, UT, United States, 11/4/07.
Yeckel, Andrew ; Aydil, Eray ; Derby, Jeffrey J. / Modeling transport and interfacial phenomena in a nanowire-based, dye-sensitized solar cell. 2007 AIChE Annual Meeting. 2007.
@inproceedings{25e78b3696794842a8927d7d53906faa,
title = "Modeling transport and interfacial phenomena in a nanowire-based, dye-sensitized solar cell",
abstract = "A model of charged species transport was used to assess the performance characteristics of a dye-sensitized solar cell. A system in which high surface area at the junction is achieved by immersing an array of ZnO semiconducting nanowires into a bath of lithium-iodide-triiodide electrolyte confined between transparent conducting oxide contacts was considered. Boundary conditions are formulated to represent open and closed circuit cases for both dark and illuminated conditions. Oxidation of iodide at the anode and reduction of triiodide at the cathode were treated using Butler-Volmer kinetics. Voltage-current relationships were then computed to determine the internal resistance of the cell, a critical factor in cell efficiency, as a function of operating conditions and cell geometry. This is an abstract of a paper presented at the 2007 AIChE Annual Meeting (Salt Lake City, UT 11/4-9/2007).",
author = "Andrew Yeckel and Eray Aydil and Derby, {Jeffrey J.}",
year = "2007",
month = "12",
day = "1",
language = "English (US)",
isbn = "9780816910229",
booktitle = "2007 AIChE Annual Meeting",

}

TY - GEN

T1 - Modeling transport and interfacial phenomena in a nanowire-based, dye-sensitized solar cell

AU - Yeckel, Andrew

AU - Aydil, Eray

AU - Derby, Jeffrey J.

PY - 2007/12/1

Y1 - 2007/12/1

N2 - A model of charged species transport was used to assess the performance characteristics of a dye-sensitized solar cell. A system in which high surface area at the junction is achieved by immersing an array of ZnO semiconducting nanowires into a bath of lithium-iodide-triiodide electrolyte confined between transparent conducting oxide contacts was considered. Boundary conditions are formulated to represent open and closed circuit cases for both dark and illuminated conditions. Oxidation of iodide at the anode and reduction of triiodide at the cathode were treated using Butler-Volmer kinetics. Voltage-current relationships were then computed to determine the internal resistance of the cell, a critical factor in cell efficiency, as a function of operating conditions and cell geometry. This is an abstract of a paper presented at the 2007 AIChE Annual Meeting (Salt Lake City, UT 11/4-9/2007).

AB - A model of charged species transport was used to assess the performance characteristics of a dye-sensitized solar cell. A system in which high surface area at the junction is achieved by immersing an array of ZnO semiconducting nanowires into a bath of lithium-iodide-triiodide electrolyte confined between transparent conducting oxide contacts was considered. Boundary conditions are formulated to represent open and closed circuit cases for both dark and illuminated conditions. Oxidation of iodide at the anode and reduction of triiodide at the cathode were treated using Butler-Volmer kinetics. Voltage-current relationships were then computed to determine the internal resistance of the cell, a critical factor in cell efficiency, as a function of operating conditions and cell geometry. This is an abstract of a paper presented at the 2007 AIChE Annual Meeting (Salt Lake City, UT 11/4-9/2007).

UR - http://www.scopus.com/inward/record.url?scp=58049101616&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=58049101616&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:58049101616

SN - 9780816910229

BT - 2007 AIChE Annual Meeting

ER -