Metformin improves diabetic bone health by re-balancing catabolism and nitrogen disposal

Xiyan Li, Yuqi Guo, Wenbo Yan, Michael P. Snyder, Xin Li

Research output: Contribution to journalArticle

Abstract

Objective: Metformin, a leading drug used to treat diabetic patients, is reported to benefit bone homeostasis under hyperglycemia in animal models. However, both the molecular targets and the biological pathways affected by metformin in bone are not well identified or characterized. The objective of this study is to investigate the bioengergeric pathways affected by metformin in bone marrow cells of mice. Materials and Methods: Metabolite levels were examined in bone marrow samples extracted from metformin or PBS-treated healthy (Wild type) and hyperglycemic (diabetic) mice using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. We applied an untargeted high performance LC-MS approach which combined multimode chromatography (ion exchange, reversed phase and hydrophilic interaction (HILIC)) and Orbitrap-based ultra-high accuracy mass spectrometry to achieve a wide coverage. A multivariate clustering was applied to reveal the global trends and major metabolite players. Results: A total of 346 unique metabolites were identified, and they are grouped into distinctive clusters that reflected general and diabetes-specific responses to metformin. As evidenced by changes in the TCA and urea cycles, increased catabolism and nitrogen waste that are commonly associated with diabetes were rebalanced upon treatment with metformin. In particular, we found glutamate and succinate whose levels were drastically elevated in diabetic animals were brought back to normal levels by metformin. These two metabolites were further validated as the major targets of metformin in bone marrow stromal cells. Conclusion: Overall using limited sample size, our study revealed the metabolic pathways modulated by metformin in bones which have broad implication in our understanding of bone remodeling under hyperglycemia and in finding therapeutic interventions in mammals.

Original languageEnglish (US)
Article numbere0146152
JournalPLoS One
Volume10
Issue number12
DOIs
StatePublished - Dec 1 2015

Fingerprint

metformin
Metformin
Bone
Nitrogen
bones
Health
Bone and Bones
metabolism
nitrogen
Metabolites
metabolites
Mass spectrometry
Mass Spectrometry
bone marrow cells
mass spectrometry
hyperglycemia
Medical problems
Hyperglycemia
diabetes
Animals

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Metformin improves diabetic bone health by re-balancing catabolism and nitrogen disposal. / Li, Xiyan; Guo, Yuqi; Yan, Wenbo; Snyder, Michael P.; Li, Xin.

In: PLoS One, Vol. 10, No. 12, e0146152, 01.12.2015.

Research output: Contribution to journalArticle

Li, Xiyan ; Guo, Yuqi ; Yan, Wenbo ; Snyder, Michael P. ; Li, Xin. / Metformin improves diabetic bone health by re-balancing catabolism and nitrogen disposal. In: PLoS One. 2015 ; Vol. 10, No. 12.
@article{b018fff10dd34e1b921546bbdee68fa8,
title = "Metformin improves diabetic bone health by re-balancing catabolism and nitrogen disposal",
abstract = "Objective: Metformin, a leading drug used to treat diabetic patients, is reported to benefit bone homeostasis under hyperglycemia in animal models. However, both the molecular targets and the biological pathways affected by metformin in bone are not well identified or characterized. The objective of this study is to investigate the bioengergeric pathways affected by metformin in bone marrow cells of mice. Materials and Methods: Metabolite levels were examined in bone marrow samples extracted from metformin or PBS-treated healthy (Wild type) and hyperglycemic (diabetic) mice using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. We applied an untargeted high performance LC-MS approach which combined multimode chromatography (ion exchange, reversed phase and hydrophilic interaction (HILIC)) and Orbitrap-based ultra-high accuracy mass spectrometry to achieve a wide coverage. A multivariate clustering was applied to reveal the global trends and major metabolite players. Results: A total of 346 unique metabolites were identified, and they are grouped into distinctive clusters that reflected general and diabetes-specific responses to metformin. As evidenced by changes in the TCA and urea cycles, increased catabolism and nitrogen waste that are commonly associated with diabetes were rebalanced upon treatment with metformin. In particular, we found glutamate and succinate whose levels were drastically elevated in diabetic animals were brought back to normal levels by metformin. These two metabolites were further validated as the major targets of metformin in bone marrow stromal cells. Conclusion: Overall using limited sample size, our study revealed the metabolic pathways modulated by metformin in bones which have broad implication in our understanding of bone remodeling under hyperglycemia and in finding therapeutic interventions in mammals.",
author = "Xiyan Li and Yuqi Guo and Wenbo Yan and Snyder, {Michael P.} and Xin Li",
year = "2015",
month = "12",
day = "1",
doi = "10.1371/journal.pone.0146152",
language = "English (US)",
volume = "10",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "12",

}

TY - JOUR

T1 - Metformin improves diabetic bone health by re-balancing catabolism and nitrogen disposal

AU - Li, Xiyan

AU - Guo, Yuqi

AU - Yan, Wenbo

AU - Snyder, Michael P.

AU - Li, Xin

PY - 2015/12/1

Y1 - 2015/12/1

N2 - Objective: Metformin, a leading drug used to treat diabetic patients, is reported to benefit bone homeostasis under hyperglycemia in animal models. However, both the molecular targets and the biological pathways affected by metformin in bone are not well identified or characterized. The objective of this study is to investigate the bioengergeric pathways affected by metformin in bone marrow cells of mice. Materials and Methods: Metabolite levels were examined in bone marrow samples extracted from metformin or PBS-treated healthy (Wild type) and hyperglycemic (diabetic) mice using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. We applied an untargeted high performance LC-MS approach which combined multimode chromatography (ion exchange, reversed phase and hydrophilic interaction (HILIC)) and Orbitrap-based ultra-high accuracy mass spectrometry to achieve a wide coverage. A multivariate clustering was applied to reveal the global trends and major metabolite players. Results: A total of 346 unique metabolites were identified, and they are grouped into distinctive clusters that reflected general and diabetes-specific responses to metformin. As evidenced by changes in the TCA and urea cycles, increased catabolism and nitrogen waste that are commonly associated with diabetes were rebalanced upon treatment with metformin. In particular, we found glutamate and succinate whose levels were drastically elevated in diabetic animals were brought back to normal levels by metformin. These two metabolites were further validated as the major targets of metformin in bone marrow stromal cells. Conclusion: Overall using limited sample size, our study revealed the metabolic pathways modulated by metformin in bones which have broad implication in our understanding of bone remodeling under hyperglycemia and in finding therapeutic interventions in mammals.

AB - Objective: Metformin, a leading drug used to treat diabetic patients, is reported to benefit bone homeostasis under hyperglycemia in animal models. However, both the molecular targets and the biological pathways affected by metformin in bone are not well identified or characterized. The objective of this study is to investigate the bioengergeric pathways affected by metformin in bone marrow cells of mice. Materials and Methods: Metabolite levels were examined in bone marrow samples extracted from metformin or PBS-treated healthy (Wild type) and hyperglycemic (diabetic) mice using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. We applied an untargeted high performance LC-MS approach which combined multimode chromatography (ion exchange, reversed phase and hydrophilic interaction (HILIC)) and Orbitrap-based ultra-high accuracy mass spectrometry to achieve a wide coverage. A multivariate clustering was applied to reveal the global trends and major metabolite players. Results: A total of 346 unique metabolites were identified, and they are grouped into distinctive clusters that reflected general and diabetes-specific responses to metformin. As evidenced by changes in the TCA and urea cycles, increased catabolism and nitrogen waste that are commonly associated with diabetes were rebalanced upon treatment with metformin. In particular, we found glutamate and succinate whose levels were drastically elevated in diabetic animals were brought back to normal levels by metformin. These two metabolites were further validated as the major targets of metformin in bone marrow stromal cells. Conclusion: Overall using limited sample size, our study revealed the metabolic pathways modulated by metformin in bones which have broad implication in our understanding of bone remodeling under hyperglycemia and in finding therapeutic interventions in mammals.

UR - http://www.scopus.com/inward/record.url?scp=84957544644&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84957544644&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0146152

DO - 10.1371/journal.pone.0146152

M3 - Article

VL - 10

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 12

M1 - e0146152

ER -