Mechanical Nano-Patterning: Toward Highly-Aligned Ge Self-Assembly on Low Lattice Mismatched GaAs Substrate

Ghada Dushaq, Mahmoud Rasras

Research output: Contribution to journalArticle

Abstract

Low-dimensional semiconductor structurers formed on a substrate surface at pre-defined locations and with nano-precision placement is of vital interest. The potential of tailoring their electrical and optical properties will revolutionize the next generation of optoelectronic devices. Traditionally, highly aligned self-assembly of semiconductors relies on Stranski- Krastanov growth mode. In this work, we demonstrate a pathway towards ordered configuration of Ge islands on low lattice mismatch GaAs (110) substrate patterned using depth-controlled nanoindentation. Diamond probe tips with different geometries are used to nano-mechanically stamp the surface of GaAs (110). This creates nanoscale volumes of dislocation-mediated deformation which acts to bias nucleation. Results show that nanostamped GaAs exhibits selective-nucleation of Ge at the indent sites. Ge islands formed on a surface patterned using cube corner tip have height of ~10 nm and lateral size of ~225 nm. Larger islands are formed by using Vickers and Berkovich diamond tips (~400 nm). The strain state of the patterned structures is characterized by micro-Raman spectroscopy. A strain value up to 2% for all tip geometries has been obtained. Additionally, strong room temperature photoluminescence (PL) emission is observed around 1.9 µm (650 meV). The observed strain-induced enhancement in the light-emission efficiency is attributed to direct conduction to heavy-hole (cΓ-HH) and conduction to light-hole (cΓ-LH) transitions. The inherent simplicity of the proposed method offers an attractive technique to manufacture semiconductor quantum dot structures for future electronic and photonic applications.

Original languageEnglish (US)
Article number14221
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

Fingerprint

Semiconductors
Islands
Diamond
Optics and Photonics
Quantum Dots
Raman Spectrum Analysis
Light
Equipment and Supplies
Temperature
Growth
gallium arsenide

ASJC Scopus subject areas

  • General

Cite this

Mechanical Nano-Patterning : Toward Highly-Aligned Ge Self-Assembly on Low Lattice Mismatched GaAs Substrate. / Dushaq, Ghada; Rasras, Mahmoud.

In: Scientific reports, Vol. 9, No. 1, 14221, 01.12.2019.

Research output: Contribution to journalArticle

@article{1fd179779b564a4389ecc170f49a0f27,
title = "Mechanical Nano-Patterning: Toward Highly-Aligned Ge Self-Assembly on Low Lattice Mismatched GaAs Substrate",
abstract = "Low-dimensional semiconductor structurers formed on a substrate surface at pre-defined locations and with nano-precision placement is of vital interest. The potential of tailoring their electrical and optical properties will revolutionize the next generation of optoelectronic devices. Traditionally, highly aligned self-assembly of semiconductors relies on Stranski- Krastanov growth mode. In this work, we demonstrate a pathway towards ordered configuration of Ge islands on low lattice mismatch GaAs (110) substrate patterned using depth-controlled nanoindentation. Diamond probe tips with different geometries are used to nano-mechanically stamp the surface of GaAs (110). This creates nanoscale volumes of dislocation-mediated deformation which acts to bias nucleation. Results show that nanostamped GaAs exhibits selective-nucleation of Ge at the indent sites. Ge islands formed on a surface patterned using cube corner tip have height of ~10 nm and lateral size of ~225 nm. Larger islands are formed by using Vickers and Berkovich diamond tips (~400 nm). The strain state of the patterned structures is characterized by micro-Raman spectroscopy. A strain value up to 2{\%} for all tip geometries has been obtained. Additionally, strong room temperature photoluminescence (PL) emission is observed around 1.9 µm (650 meV). The observed strain-induced enhancement in the light-emission efficiency is attributed to direct conduction to heavy-hole (cΓ-HH) and conduction to light-hole (cΓ-LH) transitions. The inherent simplicity of the proposed method offers an attractive technique to manufacture semiconductor quantum dot structures for future electronic and photonic applications.",
author = "Ghada Dushaq and Mahmoud Rasras",
year = "2019",
month = "12",
day = "1",
doi = "10.1038/s41598-019-50633-y",
language = "English (US)",
volume = "9",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - Mechanical Nano-Patterning

T2 - Toward Highly-Aligned Ge Self-Assembly on Low Lattice Mismatched GaAs Substrate

AU - Dushaq, Ghada

AU - Rasras, Mahmoud

PY - 2019/12/1

Y1 - 2019/12/1

N2 - Low-dimensional semiconductor structurers formed on a substrate surface at pre-defined locations and with nano-precision placement is of vital interest. The potential of tailoring their electrical and optical properties will revolutionize the next generation of optoelectronic devices. Traditionally, highly aligned self-assembly of semiconductors relies on Stranski- Krastanov growth mode. In this work, we demonstrate a pathway towards ordered configuration of Ge islands on low lattice mismatch GaAs (110) substrate patterned using depth-controlled nanoindentation. Diamond probe tips with different geometries are used to nano-mechanically stamp the surface of GaAs (110). This creates nanoscale volumes of dislocation-mediated deformation which acts to bias nucleation. Results show that nanostamped GaAs exhibits selective-nucleation of Ge at the indent sites. Ge islands formed on a surface patterned using cube corner tip have height of ~10 nm and lateral size of ~225 nm. Larger islands are formed by using Vickers and Berkovich diamond tips (~400 nm). The strain state of the patterned structures is characterized by micro-Raman spectroscopy. A strain value up to 2% for all tip geometries has been obtained. Additionally, strong room temperature photoluminescence (PL) emission is observed around 1.9 µm (650 meV). The observed strain-induced enhancement in the light-emission efficiency is attributed to direct conduction to heavy-hole (cΓ-HH) and conduction to light-hole (cΓ-LH) transitions. The inherent simplicity of the proposed method offers an attractive technique to manufacture semiconductor quantum dot structures for future electronic and photonic applications.

AB - Low-dimensional semiconductor structurers formed on a substrate surface at pre-defined locations and with nano-precision placement is of vital interest. The potential of tailoring their electrical and optical properties will revolutionize the next generation of optoelectronic devices. Traditionally, highly aligned self-assembly of semiconductors relies on Stranski- Krastanov growth mode. In this work, we demonstrate a pathway towards ordered configuration of Ge islands on low lattice mismatch GaAs (110) substrate patterned using depth-controlled nanoindentation. Diamond probe tips with different geometries are used to nano-mechanically stamp the surface of GaAs (110). This creates nanoscale volumes of dislocation-mediated deformation which acts to bias nucleation. Results show that nanostamped GaAs exhibits selective-nucleation of Ge at the indent sites. Ge islands formed on a surface patterned using cube corner tip have height of ~10 nm and lateral size of ~225 nm. Larger islands are formed by using Vickers and Berkovich diamond tips (~400 nm). The strain state of the patterned structures is characterized by micro-Raman spectroscopy. A strain value up to 2% for all tip geometries has been obtained. Additionally, strong room temperature photoluminescence (PL) emission is observed around 1.9 µm (650 meV). The observed strain-induced enhancement in the light-emission efficiency is attributed to direct conduction to heavy-hole (cΓ-HH) and conduction to light-hole (cΓ-LH) transitions. The inherent simplicity of the proposed method offers an attractive technique to manufacture semiconductor quantum dot structures for future electronic and photonic applications.

UR - http://www.scopus.com/inward/record.url?scp=85072931360&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072931360&partnerID=8YFLogxK

U2 - 10.1038/s41598-019-50633-y

DO - 10.1038/s41598-019-50633-y

M3 - Article

C2 - 31578380

AN - SCOPUS:85072931360

VL - 9

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 14221

ER -