### Abstract

I prove a new correlation inequality for a class of N-component classical ferromagnets (1≤N≤4). This inequality implies that the correlation functions decay exponentially and the spontaneous magnetization is zero, above the mean-field critical temperature.

Original language | English (US) |
---|---|

Pages (from-to) | 431-439 |

Number of pages | 9 |

Journal | Journal of Statistical Physics |

Volume | 28 |

Issue number | 3 |

DOIs | |

State | Published - Jul 1982 |

### Fingerprint

### Keywords

- correlation inequalities
- critical temperature
- Gaussian model
- GHS inequality
- Lebowitz inequality
- Mean-field theory

### ASJC Scopus subject areas

- Statistical and Nonlinear Physics
- Physics and Astronomy(all)
- Mathematical Physics

### Cite this

*Journal of Statistical Physics*,

*28*(3), 431-439. https://doi.org/10.1007/BF01008316

**Mean-field bounds and correlation inequalities.** / Sokal, Alan D.

Research output: Contribution to journal › Article

*Journal of Statistical Physics*, vol. 28, no. 3, pp. 431-439. https://doi.org/10.1007/BF01008316

}

TY - JOUR

T1 - Mean-field bounds and correlation inequalities

AU - Sokal, Alan D.

PY - 1982/7

Y1 - 1982/7

N2 - I prove a new correlation inequality for a class of N-component classical ferromagnets (1≤N≤4). This inequality implies that the correlation functions decay exponentially and the spontaneous magnetization is zero, above the mean-field critical temperature.

AB - I prove a new correlation inequality for a class of N-component classical ferromagnets (1≤N≤4). This inequality implies that the correlation functions decay exponentially and the spontaneous magnetization is zero, above the mean-field critical temperature.

KW - correlation inequalities

KW - critical temperature

KW - Gaussian model

KW - GHS inequality

KW - Lebowitz inequality

KW - Mean-field theory

UR - http://www.scopus.com/inward/record.url?scp=0009042973&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0009042973&partnerID=8YFLogxK

U2 - 10.1007/BF01008316

DO - 10.1007/BF01008316

M3 - Article

VL - 28

SP - 431

EP - 439

JO - Journal of Statistical Physics

JF - Journal of Statistical Physics

SN - 0022-4715

IS - 3

ER -