### Abstract

We prove that if n ≥ 2 and ρ, λ are two given vectors in Z^{n}, then there exists a matrix function in L^{∞} _{n×n}(T) which has a rigth Wiener-Hopf factorization in L^{2} with the partial indices ρ and a left Wiener-Hopf factorization in L^{2} with the partial indices λ.

Original language | English (US) |
---|---|

Pages (from-to) | 71-91 |

Number of pages | 21 |

Journal | Integral Equations and Operator Theory |

Volume | 36 |

Issue number | 1 |

DOIs | |

State | Published - Jan 1 2000 |

### Fingerprint

### ASJC Scopus subject areas

- Analysis
- Algebra and Number Theory

### Cite this

*Integral Equations and Operator Theory*,

*36*(1), 71-91. https://doi.org/10.1007/BF01236287

**Matrix functions with arbitrarily prescribed left and right partial indices.** / Böttcher, A.; Grudsky, S. M.; Spitkovsky, Ilya.

Research output: Contribution to journal › Article

*Integral Equations and Operator Theory*, vol. 36, no. 1, pp. 71-91. https://doi.org/10.1007/BF01236287

}

TY - JOUR

T1 - Matrix functions with arbitrarily prescribed left and right partial indices

AU - Böttcher, A.

AU - Grudsky, S. M.

AU - Spitkovsky, Ilya

PY - 2000/1/1

Y1 - 2000/1/1

N2 - We prove that if n ≥ 2 and ρ, λ are two given vectors in Zn, then there exists a matrix function in L∞ n×n(T) which has a rigth Wiener-Hopf factorization in L2 with the partial indices ρ and a left Wiener-Hopf factorization in L2 with the partial indices λ.

AB - We prove that if n ≥ 2 and ρ, λ are two given vectors in Zn, then there exists a matrix function in L∞ n×n(T) which has a rigth Wiener-Hopf factorization in L2 with the partial indices ρ and a left Wiener-Hopf factorization in L2 with the partial indices λ.

UR - http://www.scopus.com/inward/record.url?scp=0033633488&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033633488&partnerID=8YFLogxK

U2 - 10.1007/BF01236287

DO - 10.1007/BF01236287

M3 - Article

AN - SCOPUS:0033633488

VL - 36

SP - 71

EP - 91

JO - Integral Equations and Operator Theory

JF - Integral Equations and Operator Theory

SN - 0378-620X

IS - 1

ER -