Material radioassay and selection for the XENON1T dark matter experiment

XENON Collaboration

    Research output: Contribution to journalArticle

    Abstract

    The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.

    Original languageEnglish (US)
    Article number890
    JournalEuropean Physical Journal C
    Volume77
    Issue number12
    DOIs
    StatePublished - Dec 1 2017

    Fingerprint

    weakly interacting massive particles
    dark matter
    xenon
    spectroscopy
    mass spectroscopy
    Experiments
    gamma rays
    impurities
    detectors
    Xenon
    estimates
    Gamma rays
    Mass spectrometry
    atoms
    simulation
    interactions
    Spectroscopy
    Impurities
    Detectors
    Atoms

    ASJC Scopus subject areas

    • Engineering (miscellaneous)
    • Physics and Astronomy (miscellaneous)

    Cite this

    Material radioassay and selection for the XENON1T dark matter experiment. / XENON Collaboration.

    In: European Physical Journal C, Vol. 77, No. 12, 890, 01.12.2017.

    Research output: Contribution to journalArticle

    @article{fc93371a1f9742b8be1bc71f49bd5b5c,
    title = "Material radioassay and selection for the XENON1T dark matter experiment",
    abstract = "The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.",
    author = "{XENON Collaboration} and E. Aprile and J. Aalbers and F. Agostini and M. Alfonsi and Amaro, {F. D.} and M. Anthony and Francesco Arneodo and P. Barrow and L. Baudis and B. Bauermeister and {Lotfi Benabderrhmane}, Mohamed and T. Berger and Breur, {P. A.} and A. Brown and E. Brown and S. Bruenner and G. Bruno and R. Budnik and L. B{\"u}tikofer and J. Calv{\'e}n and Cardoso, {J. M.R.} and M. Cervantes and D. Cichon and D. Coderre and Colijn, {A. P.} and J. Conrad and Cussonneau, {J. P.} and Decowski, {M. P.} and {de Perio}, P. and {Di Gangi}, P. and {Di Giovanni}, A. and S. Diglio and G. Eurin and J. Fei and Ferella, {A. D.} and A. Fieguth and D. Franco and W. Fulgione and {Gallo Rosso}, A. and M. Galloway and F. Gao and M. Garbini and C. Geis and Goetzke, {L. W.} and L. Grandi and Z. Greene and C. Grignon and C. Hasterok and E. Hogenbirk and R. Itay",
    year = "2017",
    month = "12",
    day = "1",
    doi = "10.1140/epjc/s10052-017-5329-0",
    language = "English (US)",
    volume = "77",
    journal = "European Physical Journal C",
    issn = "1434-6044",
    publisher = "Springer New York",
    number = "12",

    }

    TY - JOUR

    T1 - Material radioassay and selection for the XENON1T dark matter experiment

    AU - XENON Collaboration

    AU - Aprile, E.

    AU - Aalbers, J.

    AU - Agostini, F.

    AU - Alfonsi, M.

    AU - Amaro, F. D.

    AU - Anthony, M.

    AU - Arneodo, Francesco

    AU - Barrow, P.

    AU - Baudis, L.

    AU - Bauermeister, B.

    AU - Lotfi Benabderrhmane, Mohamed

    AU - Berger, T.

    AU - Breur, P. A.

    AU - Brown, A.

    AU - Brown, E.

    AU - Bruenner, S.

    AU - Bruno, G.

    AU - Budnik, R.

    AU - Bütikofer, L.

    AU - Calvén, J.

    AU - Cardoso, J. M.R.

    AU - Cervantes, M.

    AU - Cichon, D.

    AU - Coderre, D.

    AU - Colijn, A. P.

    AU - Conrad, J.

    AU - Cussonneau, J. P.

    AU - Decowski, M. P.

    AU - de Perio, P.

    AU - Di Gangi, P.

    AU - Di Giovanni, A.

    AU - Diglio, S.

    AU - Eurin, G.

    AU - Fei, J.

    AU - Ferella, A. D.

    AU - Fieguth, A.

    AU - Franco, D.

    AU - Fulgione, W.

    AU - Gallo Rosso, A.

    AU - Galloway, M.

    AU - Gao, F.

    AU - Garbini, M.

    AU - Geis, C.

    AU - Goetzke, L. W.

    AU - Grandi, L.

    AU - Greene, Z.

    AU - Grignon, C.

    AU - Hasterok, C.

    AU - Hogenbirk, E.

    AU - Itay, R.

    PY - 2017/12/1

    Y1 - 2017/12/1

    N2 - The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.

    AB - The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.

    UR - http://www.scopus.com/inward/record.url?scp=85039041253&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=85039041253&partnerID=8YFLogxK

    U2 - 10.1140/epjc/s10052-017-5329-0

    DO - 10.1140/epjc/s10052-017-5329-0

    M3 - Article

    VL - 77

    JO - European Physical Journal C

    JF - European Physical Journal C

    SN - 1434-6044

    IS - 12

    M1 - 890

    ER -