Macroscopic Modeling of On-Street and Garage Parking: Impact on Traffic Performance

Manuel Jakob, Monica Menendez

Research output: Contribution to journalArticle

Abstract

The short-term interactions between on-street and garage parking policies and the associated parking pricing can be highly influential to the searching-for-parking traffic and the overall traffic performance in the network. In this paper, we develop a macroscopic on-street and garage parking decision model and integrate it into a traffic system with an on-street and garage parking search model over time. We formulate an on-street and garage parking-state-based matrix that describes the system dynamics of urban traffic based on different parking-related states and the number of vehicles that transition through each state in a time slice. This macroscopic modeling approach is based on aggregated data at the network level over time. This leads to data collection savings and a reduction in computational costs compared to most of the existing parking/traffic models. This easy to implement methodology can be solved with a simple numerical solver. All parking searchers face the decision to drive to a parking garage or to search for an on-street parking space in the network. This decision is affected by several parameters including the on-street and garage parking fees. Our model provides a preliminary idea for city councils regarding the short-term impacts of on-street and garage parking policies (e.g., converting on-street parking to garage parking spaces, availability of garage usage information to all drivers) and parking pricing policies on: searching-for-parking traffic (cruising), the congestion in the network (traffic performance), the total driven distance (environmental impact), as well as the revenue created for the city by the hourly on-street and garage parking fee rates. This model can be used to analyze how on-street and garage parking policies can affect traffic performance; and how traffic performance can affect the decision to use on-street or garage parking. The proposed methodology is illustrated with a case study of an area within the city of Zurich, Switzerland.

Original languageEnglish (US)
Article number5793027
JournalJournal of Advanced Transportation
Volume2019
DOIs
StatePublished - Jan 1 2019

Fingerprint

Parking
Modeling
Costs
Environmental impact
Dynamical systems
Availability

ASJC Scopus subject areas

  • Automotive Engineering
  • Economics and Econometrics
  • Mechanical Engineering
  • Computer Science Applications
  • Strategy and Management

Cite this

Macroscopic Modeling of On-Street and Garage Parking : Impact on Traffic Performance. / Jakob, Manuel; Menendez, Monica.

In: Journal of Advanced Transportation, Vol. 2019, 5793027, 01.01.2019.

Research output: Contribution to journalArticle

@article{684b881401304dc1bd54f519737df818,
title = "Macroscopic Modeling of On-Street and Garage Parking: Impact on Traffic Performance",
abstract = "The short-term interactions between on-street and garage parking policies and the associated parking pricing can be highly influential to the searching-for-parking traffic and the overall traffic performance in the network. In this paper, we develop a macroscopic on-street and garage parking decision model and integrate it into a traffic system with an on-street and garage parking search model over time. We formulate an on-street and garage parking-state-based matrix that describes the system dynamics of urban traffic based on different parking-related states and the number of vehicles that transition through each state in a time slice. This macroscopic modeling approach is based on aggregated data at the network level over time. This leads to data collection savings and a reduction in computational costs compared to most of the existing parking/traffic models. This easy to implement methodology can be solved with a simple numerical solver. All parking searchers face the decision to drive to a parking garage or to search for an on-street parking space in the network. This decision is affected by several parameters including the on-street and garage parking fees. Our model provides a preliminary idea for city councils regarding the short-term impacts of on-street and garage parking policies (e.g., converting on-street parking to garage parking spaces, availability of garage usage information to all drivers) and parking pricing policies on: searching-for-parking traffic (cruising), the congestion in the network (traffic performance), the total driven distance (environmental impact), as well as the revenue created for the city by the hourly on-street and garage parking fee rates. This model can be used to analyze how on-street and garage parking policies can affect traffic performance; and how traffic performance can affect the decision to use on-street or garage parking. The proposed methodology is illustrated with a case study of an area within the city of Zurich, Switzerland.",
author = "Manuel Jakob and Monica Menendez",
year = "2019",
month = "1",
day = "1",
doi = "10.1155/2019/5793027",
language = "English (US)",
volume = "2019",
journal = "Journal of Advanced Transportation",
issn = "0197-6729",
publisher = "John Wiley and Sons Ltd",

}

TY - JOUR

T1 - Macroscopic Modeling of On-Street and Garage Parking

T2 - Impact on Traffic Performance

AU - Jakob, Manuel

AU - Menendez, Monica

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The short-term interactions between on-street and garage parking policies and the associated parking pricing can be highly influential to the searching-for-parking traffic and the overall traffic performance in the network. In this paper, we develop a macroscopic on-street and garage parking decision model and integrate it into a traffic system with an on-street and garage parking search model over time. We formulate an on-street and garage parking-state-based matrix that describes the system dynamics of urban traffic based on different parking-related states and the number of vehicles that transition through each state in a time slice. This macroscopic modeling approach is based on aggregated data at the network level over time. This leads to data collection savings and a reduction in computational costs compared to most of the existing parking/traffic models. This easy to implement methodology can be solved with a simple numerical solver. All parking searchers face the decision to drive to a parking garage or to search for an on-street parking space in the network. This decision is affected by several parameters including the on-street and garage parking fees. Our model provides a preliminary idea for city councils regarding the short-term impacts of on-street and garage parking policies (e.g., converting on-street parking to garage parking spaces, availability of garage usage information to all drivers) and parking pricing policies on: searching-for-parking traffic (cruising), the congestion in the network (traffic performance), the total driven distance (environmental impact), as well as the revenue created for the city by the hourly on-street and garage parking fee rates. This model can be used to analyze how on-street and garage parking policies can affect traffic performance; and how traffic performance can affect the decision to use on-street or garage parking. The proposed methodology is illustrated with a case study of an area within the city of Zurich, Switzerland.

AB - The short-term interactions between on-street and garage parking policies and the associated parking pricing can be highly influential to the searching-for-parking traffic and the overall traffic performance in the network. In this paper, we develop a macroscopic on-street and garage parking decision model and integrate it into a traffic system with an on-street and garage parking search model over time. We formulate an on-street and garage parking-state-based matrix that describes the system dynamics of urban traffic based on different parking-related states and the number of vehicles that transition through each state in a time slice. This macroscopic modeling approach is based on aggregated data at the network level over time. This leads to data collection savings and a reduction in computational costs compared to most of the existing parking/traffic models. This easy to implement methodology can be solved with a simple numerical solver. All parking searchers face the decision to drive to a parking garage or to search for an on-street parking space in the network. This decision is affected by several parameters including the on-street and garage parking fees. Our model provides a preliminary idea for city councils regarding the short-term impacts of on-street and garage parking policies (e.g., converting on-street parking to garage parking spaces, availability of garage usage information to all drivers) and parking pricing policies on: searching-for-parking traffic (cruising), the congestion in the network (traffic performance), the total driven distance (environmental impact), as well as the revenue created for the city by the hourly on-street and garage parking fee rates. This model can be used to analyze how on-street and garage parking policies can affect traffic performance; and how traffic performance can affect the decision to use on-street or garage parking. The proposed methodology is illustrated with a case study of an area within the city of Zurich, Switzerland.

UR - http://www.scopus.com/inward/record.url?scp=85076537959&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85076537959&partnerID=8YFLogxK

U2 - 10.1155/2019/5793027

DO - 10.1155/2019/5793027

M3 - Article

AN - SCOPUS:85076537959

VL - 2019

JO - Journal of Advanced Transportation

JF - Journal of Advanced Transportation

SN - 0197-6729

M1 - 5793027

ER -