Low-frequency climate response and fluctuation-dissipation theorems

Theory and practice

Andrew J. Majda, Boris Gershgorin, Yuan Yuan

Research output: Contribution to journalArticle

Abstract

The low-frequency response to changes in external forcing or other parameters for various components of the climate system is a central problem of contemporary climate change science. The fluctuation-dissipation theorem (FDT) is an attractive way to assess climate change by utilizing statistics of the present climate; with systematic approximations, it has been shown recently to have high skill for suitable regimes of an atmospheric general circulation model (GCM). Further applications of FDT to low-frequency climate response require improved approximations for FDT on a reduced subspace of resolved variables. Here, systematic mathematical principles are utilized to develop new FDT approximations on reduced subspaces and to assess the small yet signicant departures from Gaussianity in low-frequency variables on the FDT response. Simplied test models mimicking crucial features in GCMs are utilized here to elucidate these issues and various FDT approximations in an unambiguous fashion. Also, the shortcomings of alternative ad hoc procedures for FDT in the recent literature are discussed here. In particular, it is shown that linear regression stochastic models for the FDT response always have no skill for a general nonlinear system for the variance response and can have poor or moderate skill for the mean response depending on the regime of the Lorenz 40-model and the details of the regression strategy. New nonlinear stochastic FDT approximations for a reduced set of variables are introduced here with signicant skill in capturing the effect of subtle departures from Gaussianity in the low-frequency response for a reduced set of variables.

Original languageEnglish (US)
Pages (from-to)1186-1201
Number of pages16
JournalJournal of the Atmospheric Sciences
Volume67
Issue number4
DOIs
StatePublished - Apr 2010

Fingerprint

dissipation
climate
climate change
atmospheric general circulation model
model test
general circulation model

ASJC Scopus subject areas

  • Atmospheric Science

Cite this

Low-frequency climate response and fluctuation-dissipation theorems : Theory and practice. / Majda, Andrew J.; Gershgorin, Boris; Yuan, Yuan.

In: Journal of the Atmospheric Sciences, Vol. 67, No. 4, 04.2010, p. 1186-1201.

Research output: Contribution to journalArticle

Majda, Andrew J. ; Gershgorin, Boris ; Yuan, Yuan. / Low-frequency climate response and fluctuation-dissipation theorems : Theory and practice. In: Journal of the Atmospheric Sciences. 2010 ; Vol. 67, No. 4. pp. 1186-1201.
@article{6d139c5af19c4e3490706a79bbac4a06,
title = "Low-frequency climate response and fluctuation-dissipation theorems: Theory and practice",
abstract = "The low-frequency response to changes in external forcing or other parameters for various components of the climate system is a central problem of contemporary climate change science. The fluctuation-dissipation theorem (FDT) is an attractive way to assess climate change by utilizing statistics of the present climate; with systematic approximations, it has been shown recently to have high skill for suitable regimes of an atmospheric general circulation model (GCM). Further applications of FDT to low-frequency climate response require improved approximations for FDT on a reduced subspace of resolved variables. Here, systematic mathematical principles are utilized to develop new FDT approximations on reduced subspaces and to assess the small yet signicant departures from Gaussianity in low-frequency variables on the FDT response. Simplied test models mimicking crucial features in GCMs are utilized here to elucidate these issues and various FDT approximations in an unambiguous fashion. Also, the shortcomings of alternative ad hoc procedures for FDT in the recent literature are discussed here. In particular, it is shown that linear regression stochastic models for the FDT response always have no skill for a general nonlinear system for the variance response and can have poor or moderate skill for the mean response depending on the regime of the Lorenz 40-model and the details of the regression strategy. New nonlinear stochastic FDT approximations for a reduced set of variables are introduced here with signicant skill in capturing the effect of subtle departures from Gaussianity in the low-frequency response for a reduced set of variables.",
author = "Majda, {Andrew J.} and Boris Gershgorin and Yuan Yuan",
year = "2010",
month = "4",
doi = "10.1175/2009JAS3264.1",
language = "English (US)",
volume = "67",
pages = "1186--1201",
journal = "Journals of the Atmospheric Sciences",
issn = "0022-4928",
publisher = "American Meteorological Society",
number = "4",

}

TY - JOUR

T1 - Low-frequency climate response and fluctuation-dissipation theorems

T2 - Theory and practice

AU - Majda, Andrew J.

AU - Gershgorin, Boris

AU - Yuan, Yuan

PY - 2010/4

Y1 - 2010/4

N2 - The low-frequency response to changes in external forcing or other parameters for various components of the climate system is a central problem of contemporary climate change science. The fluctuation-dissipation theorem (FDT) is an attractive way to assess climate change by utilizing statistics of the present climate; with systematic approximations, it has been shown recently to have high skill for suitable regimes of an atmospheric general circulation model (GCM). Further applications of FDT to low-frequency climate response require improved approximations for FDT on a reduced subspace of resolved variables. Here, systematic mathematical principles are utilized to develop new FDT approximations on reduced subspaces and to assess the small yet signicant departures from Gaussianity in low-frequency variables on the FDT response. Simplied test models mimicking crucial features in GCMs are utilized here to elucidate these issues and various FDT approximations in an unambiguous fashion. Also, the shortcomings of alternative ad hoc procedures for FDT in the recent literature are discussed here. In particular, it is shown that linear regression stochastic models for the FDT response always have no skill for a general nonlinear system for the variance response and can have poor or moderate skill for the mean response depending on the regime of the Lorenz 40-model and the details of the regression strategy. New nonlinear stochastic FDT approximations for a reduced set of variables are introduced here with signicant skill in capturing the effect of subtle departures from Gaussianity in the low-frequency response for a reduced set of variables.

AB - The low-frequency response to changes in external forcing or other parameters for various components of the climate system is a central problem of contemporary climate change science. The fluctuation-dissipation theorem (FDT) is an attractive way to assess climate change by utilizing statistics of the present climate; with systematic approximations, it has been shown recently to have high skill for suitable regimes of an atmospheric general circulation model (GCM). Further applications of FDT to low-frequency climate response require improved approximations for FDT on a reduced subspace of resolved variables. Here, systematic mathematical principles are utilized to develop new FDT approximations on reduced subspaces and to assess the small yet signicant departures from Gaussianity in low-frequency variables on the FDT response. Simplied test models mimicking crucial features in GCMs are utilized here to elucidate these issues and various FDT approximations in an unambiguous fashion. Also, the shortcomings of alternative ad hoc procedures for FDT in the recent literature are discussed here. In particular, it is shown that linear regression stochastic models for the FDT response always have no skill for a general nonlinear system for the variance response and can have poor or moderate skill for the mean response depending on the regime of the Lorenz 40-model and the details of the regression strategy. New nonlinear stochastic FDT approximations for a reduced set of variables are introduced here with signicant skill in capturing the effect of subtle departures from Gaussianity in the low-frequency response for a reduced set of variables.

UR - http://www.scopus.com/inward/record.url?scp=77949738950&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77949738950&partnerID=8YFLogxK

U2 - 10.1175/2009JAS3264.1

DO - 10.1175/2009JAS3264.1

M3 - Article

VL - 67

SP - 1186

EP - 1201

JO - Journals of the Atmospheric Sciences

JF - Journals of the Atmospheric Sciences

SN - 0022-4928

IS - 4

ER -