### Abstract

Consider a smooth log Fano variety over the function field of a curve. Suppose that the boundary has positive normal bundle. Choose an integral model over the curve. Then integral points are Zariski dense, after removing an explicit finite set of points on the base curve.

Original language | English (US) |
---|---|

Pages (from-to) | 7-21 |

Number of pages | 15 |

Journal | Inventiones Mathematicae |

Volume | 173 |

Issue number | 1 |

DOIs | |

State | Published - Jul 2008 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

*Inventiones Mathematicae*,

*173*(1), 7-21. https://doi.org/10.1007/s00222-008-0113-2

**Log Fano varieties over function fields of curves.** / Hassett, Brendan; Tschinkel, Yuri.

Research output: Contribution to journal › Article

*Inventiones Mathematicae*, vol. 173, no. 1, pp. 7-21. https://doi.org/10.1007/s00222-008-0113-2

}

TY - JOUR

T1 - Log Fano varieties over function fields of curves

AU - Hassett, Brendan

AU - Tschinkel, Yuri

PY - 2008/7

Y1 - 2008/7

N2 - Consider a smooth log Fano variety over the function field of a curve. Suppose that the boundary has positive normal bundle. Choose an integral model over the curve. Then integral points are Zariski dense, after removing an explicit finite set of points on the base curve.

AB - Consider a smooth log Fano variety over the function field of a curve. Suppose that the boundary has positive normal bundle. Choose an integral model over the curve. Then integral points are Zariski dense, after removing an explicit finite set of points on the base curve.

UR - http://www.scopus.com/inward/record.url?scp=44349130365&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=44349130365&partnerID=8YFLogxK

U2 - 10.1007/s00222-008-0113-2

DO - 10.1007/s00222-008-0113-2

M3 - Article

AN - SCOPUS:44349130365

VL - 173

SP - 7

EP - 21

JO - Inventiones Mathematicae

JF - Inventiones Mathematicae

SN - 0020-9910

IS - 1

ER -