Lipschitz sums of convex functions

Marianna Csörnyei, Assaf Naor

Research output: Contribution to journalArticle

Abstract

We give a geometric characterization of the convex subsets of a Banach space with the property that for any two convex continuous functions on this set, if their sum is Lipschitz, then the functions must be Lipschitz. We apply this result to the theory of Δ-convex functions.

Original languageEnglish (US)
Pages (from-to)269-286
Number of pages18
JournalStudia Mathematica
Volume158
Issue number3
StatePublished - 2003

Fingerprint

Convex function
Lipschitz
Continuous Function
Banach space
Subset

Keywords

  • Δ-convex mappings
  • Convex functions
  • Lipschitz functions

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Csörnyei, M., & Naor, A. (2003). Lipschitz sums of convex functions. Studia Mathematica, 158(3), 269-286.

Lipschitz sums of convex functions. / Csörnyei, Marianna; Naor, Assaf.

In: Studia Mathematica, Vol. 158, No. 3, 2003, p. 269-286.

Research output: Contribution to journalArticle

Csörnyei, M & Naor, A 2003, 'Lipschitz sums of convex functions', Studia Mathematica, vol. 158, no. 3, pp. 269-286.
Csörnyei M, Naor A. Lipschitz sums of convex functions. Studia Mathematica. 2003;158(3):269-286.
Csörnyei, Marianna ; Naor, Assaf. / Lipschitz sums of convex functions. In: Studia Mathematica. 2003 ; Vol. 158, No. 3. pp. 269-286.
@article{e6235731a00d4665ba4c23c8bbb4722a,
title = "Lipschitz sums of convex functions",
abstract = "We give a geometric characterization of the convex subsets of a Banach space with the property that for any two convex continuous functions on this set, if their sum is Lipschitz, then the functions must be Lipschitz. We apply this result to the theory of Δ-convex functions.",
keywords = "Δ-convex mappings, Convex functions, Lipschitz functions",
author = "Marianna Cs{\"o}rnyei and Assaf Naor",
year = "2003",
language = "English (US)",
volume = "158",
pages = "269--286",
journal = "Studia Mathematica",
issn = "0039-3223",
publisher = "Instytut Matematyczny",
number = "3",

}

TY - JOUR

T1 - Lipschitz sums of convex functions

AU - Csörnyei, Marianna

AU - Naor, Assaf

PY - 2003

Y1 - 2003

N2 - We give a geometric characterization of the convex subsets of a Banach space with the property that for any two convex continuous functions on this set, if their sum is Lipschitz, then the functions must be Lipschitz. We apply this result to the theory of Δ-convex functions.

AB - We give a geometric characterization of the convex subsets of a Banach space with the property that for any two convex continuous functions on this set, if their sum is Lipschitz, then the functions must be Lipschitz. We apply this result to the theory of Δ-convex functions.

KW - Δ-convex mappings

KW - Convex functions

KW - Lipschitz functions

UR - http://www.scopus.com/inward/record.url?scp=0142199428&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0142199428&partnerID=8YFLogxK

M3 - Article

VL - 158

SP - 269

EP - 286

JO - Studia Mathematica

JF - Studia Mathematica

SN - 0039-3223

IS - 3

ER -