Likelihood approach to the first dark matter results from XENON100

E. Aprile, K. Arisaka, Francesco Arneodo, A. Askin, L. Baudis, A. Behrens, K. Bokeloh, E. Brown, T. Bruch, J. M.R. Cardoso, B. Choi, D. Cline, E. Duchovni, S. Fattori, A. D. Ferella, K. L. Giboni, E. Gross, A. Kish, C. W. Lam, J. LamblinR. F. Lang, K. E. Lim, S. Lindemann, M. Lindner, J. A.M. Lopes, T. Marrodán Undagoitia, Y. Mei, A. J. Melgarejo Fernandez, K. Ni, U. Oberlack, S. E.A. Orrigo, E. Pantic, G. Plante, A. C.C. Ribeiro, R. Santorelli, J. M.F. Dos Santos, M. Schumann, P. Shagin, A. Teymourian, D. Thers, E. Tziaferi, O. Vitells, H. Wang, M. Weber, C. Weinheimer

Research output: Contribution to journalArticle

Abstract

Many experiments that aim at the direct detection of dark matter are able to distinguish a dominant background from the expected feeble signals, based on some measured discrimination parameter. We develop a statistical model for such experiments using the profile likelihood ratio as a test statistic in a frequentist approach. We take data from calibrations as control measurements for signal and background, and the method allows the inclusion of data from Monte Carlo simulations. Systematic detector uncertainties, such as uncertainties in the energy scale, as well as astrophysical uncertainties, are included in the model. The statistical model can be used to either set an exclusion limit or to quantify a discovery claim, and the results are derived with the proper treatment of statistical and systematic uncertainties. We apply the model to the first data release of the XENON100 experiment, which allows one to extract additional information from the data, and place stronger limits on the spin-independent elastic weakly interacting massive particles nucleon scattering cross section. In particular, we derive a single limit, including all relevant systematic uncertainties, with a minimum of 2.4×10-44cm2 for weakly interacting massive particles with a mass of 50GeV/c2.

Original languageEnglish (US)
Article number052003
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume84
Issue number5
DOIs
StatePublished - Sep 7 2011

Fingerprint

dark matter
weakly interacting massive particles
likelihood ratio
exclusion
scattering cross sections
discrimination
astrophysics
statistics
inclusions
detectors
profiles
simulation
energy

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Cite this

Likelihood approach to the first dark matter results from XENON100. / Aprile, E.; Arisaka, K.; Arneodo, Francesco; Askin, A.; Baudis, L.; Behrens, A.; Bokeloh, K.; Brown, E.; Bruch, T.; Cardoso, J. M.R.; Choi, B.; Cline, D.; Duchovni, E.; Fattori, S.; Ferella, A. D.; Giboni, K. L.; Gross, E.; Kish, A.; Lam, C. W.; Lamblin, J.; Lang, R. F.; Lim, K. E.; Lindemann, S.; Lindner, M.; Lopes, J. A.M.; Marrodán Undagoitia, T.; Mei, Y.; Melgarejo Fernandez, A. J.; Ni, K.; Oberlack, U.; Orrigo, S. E.A.; Pantic, E.; Plante, G.; Ribeiro, A. C.C.; Santorelli, R.; Dos Santos, J. M.F.; Schumann, M.; Shagin, P.; Teymourian, A.; Thers, D.; Tziaferi, E.; Vitells, O.; Wang, H.; Weber, M.; Weinheimer, C.

In: Physical Review D - Particles, Fields, Gravitation and Cosmology, Vol. 84, No. 5, 052003, 07.09.2011.

Research output: Contribution to journalArticle

Aprile, E, Arisaka, K, Arneodo, F, Askin, A, Baudis, L, Behrens, A, Bokeloh, K, Brown, E, Bruch, T, Cardoso, JMR, Choi, B, Cline, D, Duchovni, E, Fattori, S, Ferella, AD, Giboni, KL, Gross, E, Kish, A, Lam, CW, Lamblin, J, Lang, RF, Lim, KE, Lindemann, S, Lindner, M, Lopes, JAM, Marrodán Undagoitia, T, Mei, Y, Melgarejo Fernandez, AJ, Ni, K, Oberlack, U, Orrigo, SEA, Pantic, E, Plante, G, Ribeiro, ACC, Santorelli, R, Dos Santos, JMF, Schumann, M, Shagin, P, Teymourian, A, Thers, D, Tziaferi, E, Vitells, O, Wang, H, Weber, M & Weinheimer, C 2011, 'Likelihood approach to the first dark matter results from XENON100', Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 84, no. 5, 052003. https://doi.org/10.1103/PhysRevD.84.052003
Aprile, E. ; Arisaka, K. ; Arneodo, Francesco ; Askin, A. ; Baudis, L. ; Behrens, A. ; Bokeloh, K. ; Brown, E. ; Bruch, T. ; Cardoso, J. M.R. ; Choi, B. ; Cline, D. ; Duchovni, E. ; Fattori, S. ; Ferella, A. D. ; Giboni, K. L. ; Gross, E. ; Kish, A. ; Lam, C. W. ; Lamblin, J. ; Lang, R. F. ; Lim, K. E. ; Lindemann, S. ; Lindner, M. ; Lopes, J. A.M. ; Marrodán Undagoitia, T. ; Mei, Y. ; Melgarejo Fernandez, A. J. ; Ni, K. ; Oberlack, U. ; Orrigo, S. E.A. ; Pantic, E. ; Plante, G. ; Ribeiro, A. C.C. ; Santorelli, R. ; Dos Santos, J. M.F. ; Schumann, M. ; Shagin, P. ; Teymourian, A. ; Thers, D. ; Tziaferi, E. ; Vitells, O. ; Wang, H. ; Weber, M. ; Weinheimer, C. / Likelihood approach to the first dark matter results from XENON100. In: Physical Review D - Particles, Fields, Gravitation and Cosmology. 2011 ; Vol. 84, No. 5.
@article{ec3d4ed6e5c9492db979db1bc4f4ce7c,
title = "Likelihood approach to the first dark matter results from XENON100",
abstract = "Many experiments that aim at the direct detection of dark matter are able to distinguish a dominant background from the expected feeble signals, based on some measured discrimination parameter. We develop a statistical model for such experiments using the profile likelihood ratio as a test statistic in a frequentist approach. We take data from calibrations as control measurements for signal and background, and the method allows the inclusion of data from Monte Carlo simulations. Systematic detector uncertainties, such as uncertainties in the energy scale, as well as astrophysical uncertainties, are included in the model. The statistical model can be used to either set an exclusion limit or to quantify a discovery claim, and the results are derived with the proper treatment of statistical and systematic uncertainties. We apply the model to the first data release of the XENON100 experiment, which allows one to extract additional information from the data, and place stronger limits on the spin-independent elastic weakly interacting massive particles nucleon scattering cross section. In particular, we derive a single limit, including all relevant systematic uncertainties, with a minimum of 2.4×10-44cm2 for weakly interacting massive particles with a mass of 50GeV/c2.",
author = "E. Aprile and K. Arisaka and Francesco Arneodo and A. Askin and L. Baudis and A. Behrens and K. Bokeloh and E. Brown and T. Bruch and Cardoso, {J. M.R.} and B. Choi and D. Cline and E. Duchovni and S. Fattori and Ferella, {A. D.} and Giboni, {K. L.} and E. Gross and A. Kish and Lam, {C. W.} and J. Lamblin and Lang, {R. F.} and Lim, {K. E.} and S. Lindemann and M. Lindner and Lopes, {J. A.M.} and {Marrod{\'a}n Undagoitia}, T. and Y. Mei and {Melgarejo Fernandez}, {A. J.} and K. Ni and U. Oberlack and Orrigo, {S. E.A.} and E. Pantic and G. Plante and Ribeiro, {A. C.C.} and R. Santorelli and {Dos Santos}, {J. M.F.} and M. Schumann and P. Shagin and A. Teymourian and D. Thers and E. Tziaferi and O. Vitells and H. Wang and M. Weber and C. Weinheimer",
year = "2011",
month = "9",
day = "7",
doi = "10.1103/PhysRevD.84.052003",
language = "English (US)",
volume = "84",
journal = "Physical review D: Particles and fields",
issn = "1550-7998",
publisher = "American Institute of Physics",
number = "5",

}

TY - JOUR

T1 - Likelihood approach to the first dark matter results from XENON100

AU - Aprile, E.

AU - Arisaka, K.

AU - Arneodo, Francesco

AU - Askin, A.

AU - Baudis, L.

AU - Behrens, A.

AU - Bokeloh, K.

AU - Brown, E.

AU - Bruch, T.

AU - Cardoso, J. M.R.

AU - Choi, B.

AU - Cline, D.

AU - Duchovni, E.

AU - Fattori, S.

AU - Ferella, A. D.

AU - Giboni, K. L.

AU - Gross, E.

AU - Kish, A.

AU - Lam, C. W.

AU - Lamblin, J.

AU - Lang, R. F.

AU - Lim, K. E.

AU - Lindemann, S.

AU - Lindner, M.

AU - Lopes, J. A.M.

AU - Marrodán Undagoitia, T.

AU - Mei, Y.

AU - Melgarejo Fernandez, A. J.

AU - Ni, K.

AU - Oberlack, U.

AU - Orrigo, S. E.A.

AU - Pantic, E.

AU - Plante, G.

AU - Ribeiro, A. C.C.

AU - Santorelli, R.

AU - Dos Santos, J. M.F.

AU - Schumann, M.

AU - Shagin, P.

AU - Teymourian, A.

AU - Thers, D.

AU - Tziaferi, E.

AU - Vitells, O.

AU - Wang, H.

AU - Weber, M.

AU - Weinheimer, C.

PY - 2011/9/7

Y1 - 2011/9/7

N2 - Many experiments that aim at the direct detection of dark matter are able to distinguish a dominant background from the expected feeble signals, based on some measured discrimination parameter. We develop a statistical model for such experiments using the profile likelihood ratio as a test statistic in a frequentist approach. We take data from calibrations as control measurements for signal and background, and the method allows the inclusion of data from Monte Carlo simulations. Systematic detector uncertainties, such as uncertainties in the energy scale, as well as astrophysical uncertainties, are included in the model. The statistical model can be used to either set an exclusion limit or to quantify a discovery claim, and the results are derived with the proper treatment of statistical and systematic uncertainties. We apply the model to the first data release of the XENON100 experiment, which allows one to extract additional information from the data, and place stronger limits on the spin-independent elastic weakly interacting massive particles nucleon scattering cross section. In particular, we derive a single limit, including all relevant systematic uncertainties, with a minimum of 2.4×10-44cm2 for weakly interacting massive particles with a mass of 50GeV/c2.

AB - Many experiments that aim at the direct detection of dark matter are able to distinguish a dominant background from the expected feeble signals, based on some measured discrimination parameter. We develop a statistical model for such experiments using the profile likelihood ratio as a test statistic in a frequentist approach. We take data from calibrations as control measurements for signal and background, and the method allows the inclusion of data from Monte Carlo simulations. Systematic detector uncertainties, such as uncertainties in the energy scale, as well as astrophysical uncertainties, are included in the model. The statistical model can be used to either set an exclusion limit or to quantify a discovery claim, and the results are derived with the proper treatment of statistical and systematic uncertainties. We apply the model to the first data release of the XENON100 experiment, which allows one to extract additional information from the data, and place stronger limits on the spin-independent elastic weakly interacting massive particles nucleon scattering cross section. In particular, we derive a single limit, including all relevant systematic uncertainties, with a minimum of 2.4×10-44cm2 for weakly interacting massive particles with a mass of 50GeV/c2.

UR - http://www.scopus.com/inward/record.url?scp=80053095547&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80053095547&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.84.052003

DO - 10.1103/PhysRevD.84.052003

M3 - Article

VL - 84

JO - Physical review D: Particles and fields

JF - Physical review D: Particles and fields

SN - 1550-7998

IS - 5

M1 - 052003

ER -