Learning object-specific distance from a monocular image

Jing Zhu, Yi Fang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Environment perception, including object detection and distance estimation, is one of the most crucial tasks for autonomous driving. Many attentions have been paid on the object detection task, but distance estimation only arouse few interests in the computer vision community. Observing that the traditional inverse perspective mapping algorithm performs poorly for objects far away from the camera or on the curved road, in this paper, we address the challenging distance estimation problem by developing the first end-to-end learning-based model to directly predict distances for given objects in the images. Besides the introduction of a learning-based base model, we further design an enhanced model with a keypoint regressor, where a projection loss is defined to enforce a better distance estimation, especially for objects close to the camera. To facilitate the research on this task, we construct the extented KITTI and nuScenes (mini) object detection datasets with a distance for each object. Our experiments demonstrate that our proposed methods outperform alternative approaches (e.g., the traditional IPM, SVR) on object-specific distance estimation, particularly for the challenging cases that objects are on a curved road. Moreover, the performance margin implies the effectiveness of our enhanced method.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3838-3847
Number of pages10
ISBN (Electronic)9781728148038
DOIs
StatePublished - Oct 2019
Event17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of
Duration: Oct 27 2019Nov 2 2019

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2019-October
ISSN (Print)1550-5499

Conference

Conference17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
CountryKorea, Republic of
CitySeoul
Period10/27/1911/2/19

    Fingerprint

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Cite this

Zhu, J., & Fang, Y. (2019). Learning object-specific distance from a monocular image. In Proceedings - 2019 International Conference on Computer Vision, ICCV 2019 (pp. 3838-3847). [9008840] (Proceedings of the IEEE International Conference on Computer Vision; Vol. 2019-October). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICCV.2019.00394