Laplace asymptotics for reaction-diffusion equations

Gérard Ben Arous, Alain Rouault

Research output: Contribution to journalArticle

Abstract

We obtain sharp (i.e. non logarithmic) asymptotics for the solution of non homogeneous Kolmogorov-Petrovski-Piskunov equation depending on a small parameter ε, for points ahead of the Freidlin-KPP front.

Original languageEnglish (US)
Pages (from-to)259-285
Number of pages27
JournalProbability Theory and Related Fields
Volume97
Issue number1-2
DOIs
StatePublished - Mar 1993

Fingerprint

Reaction-diffusion Equations
Laplace
Small Parameter
Logarithmic

Keywords

  • Mathematics Subject Classification (1991): 35K55, 35K57, 60F10, 60H30, 60J65, 60J80

ASJC Scopus subject areas

  • Statistics and Probability
  • Analysis
  • Mathematics(all)

Cite this

Laplace asymptotics for reaction-diffusion equations. / Arous, Gérard Ben; Rouault, Alain.

In: Probability Theory and Related Fields, Vol. 97, No. 1-2, 03.1993, p. 259-285.

Research output: Contribution to journalArticle

@article{0411e7c170bf4484b5f34018fcadb17f,
title = "Laplace asymptotics for reaction-diffusion equations",
abstract = "We obtain sharp (i.e. non logarithmic) asymptotics for the solution of non homogeneous Kolmogorov-Petrovski-Piskunov equation depending on a small parameter ε, for points ahead of the Freidlin-KPP front.",
keywords = "Mathematics Subject Classification (1991): 35K55, 35K57, 60F10, 60H30, 60J65, 60J80",
author = "Arous, {G{\'e}rard Ben} and Alain Rouault",
year = "1993",
month = "3",
doi = "10.1007/BF01199323",
language = "English (US)",
volume = "97",
pages = "259--285",
journal = "Probability Theory and Related Fields",
issn = "0178-8051",
number = "1-2",

}

TY - JOUR

T1 - Laplace asymptotics for reaction-diffusion equations

AU - Arous, Gérard Ben

AU - Rouault, Alain

PY - 1993/3

Y1 - 1993/3

N2 - We obtain sharp (i.e. non logarithmic) asymptotics for the solution of non homogeneous Kolmogorov-Petrovski-Piskunov equation depending on a small parameter ε, for points ahead of the Freidlin-KPP front.

AB - We obtain sharp (i.e. non logarithmic) asymptotics for the solution of non homogeneous Kolmogorov-Petrovski-Piskunov equation depending on a small parameter ε, for points ahead of the Freidlin-KPP front.

KW - Mathematics Subject Classification (1991): 35K55, 35K57, 60F10, 60H30, 60J65, 60J80

UR - http://www.scopus.com/inward/record.url?scp=21344477591&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=21344477591&partnerID=8YFLogxK

U2 - 10.1007/BF01199323

DO - 10.1007/BF01199323

M3 - Article

VL - 97

SP - 259

EP - 285

JO - Probability Theory and Related Fields

JF - Probability Theory and Related Fields

SN - 0178-8051

IS - 1-2

ER -