Inversion of an integral transform associated with tomography in radar detection

E. Feig, F. P. Greenleaf

Research output: Contribution to journalArticle

Abstract

The integral transform, F( mu , nu )= integral -infinity infinity D( eta mu , eta + nu ) exp(i mu eta 2)d eta applied to functions D(x, y) on the plane, arises when one applies tomographic reconstruction techniques to problems in radar detection. The authors show that this transform can be inverted to reconstruct the superposition D+D composed with A, where A is a fixed linear transformation of the plane. In the case relevant to applications, where D(x, y) is real valued and vanishes on the half plane x<0, D itself can be reconstructed.

Original languageEnglish (US)
Article number008
Pages (from-to)405-411
Number of pages7
JournalInverse Problems
Volume2
Issue number4
DOIs
StatePublished - 1986

Fingerprint

radar detection
integral transformations
Linear transformations
Integral Transform
Tomography
infinity
Radar
Inversion
tomography
Infinity
inversions
linear transformations
half planes
Linear transformation
Half-plane
Superposition
Vanish
Transform

ASJC Scopus subject areas

  • Mathematical Physics
  • Statistical and Nonlinear Physics
  • Physics and Astronomy(all)
  • Applied Mathematics

Cite this

Inversion of an integral transform associated with tomography in radar detection. / Feig, E.; Greenleaf, F. P.

In: Inverse Problems, Vol. 2, No. 4, 008, 1986, p. 405-411.

Research output: Contribution to journalArticle

Feig, E. ; Greenleaf, F. P. / Inversion of an integral transform associated with tomography in radar detection. In: Inverse Problems. 1986 ; Vol. 2, No. 4. pp. 405-411.
@article{fc371cd0bfc049a796e8fe68d43a0f2b,
title = "Inversion of an integral transform associated with tomography in radar detection",
abstract = "The integral transform, F( mu , nu )= integral -infinity infinity D( eta mu , eta + nu ) exp(i mu eta 2)d eta applied to functions D(x, y) on the plane, arises when one applies tomographic reconstruction techniques to problems in radar detection. The authors show that this transform can be inverted to reconstruct the superposition D+D composed with A, where A is a fixed linear transformation of the plane. In the case relevant to applications, where D(x, y) is real valued and vanishes on the half plane x<0, D itself can be reconstructed.",
author = "E. Feig and Greenleaf, {F. P.}",
year = "1986",
doi = "10.1088/0266-5611/2/4/008",
language = "English (US)",
volume = "2",
pages = "405--411",
journal = "Inverse Problems",
issn = "0266-5611",
publisher = "IOP Publishing Ltd.",
number = "4",

}

TY - JOUR

T1 - Inversion of an integral transform associated with tomography in radar detection

AU - Feig, E.

AU - Greenleaf, F. P.

PY - 1986

Y1 - 1986

N2 - The integral transform, F( mu , nu )= integral -infinity infinity D( eta mu , eta + nu ) exp(i mu eta 2)d eta applied to functions D(x, y) on the plane, arises when one applies tomographic reconstruction techniques to problems in radar detection. The authors show that this transform can be inverted to reconstruct the superposition D+D composed with A, where A is a fixed linear transformation of the plane. In the case relevant to applications, where D(x, y) is real valued and vanishes on the half plane x<0, D itself can be reconstructed.

AB - The integral transform, F( mu , nu )= integral -infinity infinity D( eta mu , eta + nu ) exp(i mu eta 2)d eta applied to functions D(x, y) on the plane, arises when one applies tomographic reconstruction techniques to problems in radar detection. The authors show that this transform can be inverted to reconstruct the superposition D+D composed with A, where A is a fixed linear transformation of the plane. In the case relevant to applications, where D(x, y) is real valued and vanishes on the half plane x<0, D itself can be reconstructed.

UR - http://www.scopus.com/inward/record.url?scp=36149034150&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36149034150&partnerID=8YFLogxK

U2 - 10.1088/0266-5611/2/4/008

DO - 10.1088/0266-5611/2/4/008

M3 - Article

VL - 2

SP - 405

EP - 411

JO - Inverse Problems

JF - Inverse Problems

SN - 0266-5611

IS - 4

M1 - 008

ER -