Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance

Min Kyu Cho, Anindita Gayen, James R. Banigan, Maureen Leninger, Nathaniel J. Traaseth

Research output: Contribution to journalArticle

Abstract

EmrE is a multidrug resistance efflux pump with specificity to a wide range of antibiotics and antiseptics. To obtain atomic-scale insight into the attributes of the native state that encodes the broad specificity, we used a hybrid of solution and solid-state NMR methods in lipid bilayers and bicelles. Our results indicate that the native EmrE dimer oscillates between inward and outward facing structural conformations at an exchange rate (kex) of ∼300 s-1 at 37 °C (millisecond motions), which is ∼50-fold faster relative to the tetraphenylphosphonium (TPP+) substrate-bound form of the protein. These observables provide quantitative evidence that the rate-limiting step in the TPP+ transport cycle is not the outward-inward conformational change in the absence of drug. In addition, using differential scanning calorimetry, we found that the width of the gel-to-liquid crystalline phase transition was 2 °C broader in the absence of the TPP+ substrate versus its presence, which suggested that changes in transporter dynamics can impact the phase properties of the membrane. Interestingly, experiments with cross-linked EmrE showed that the millisecond inward-open to outward-open dynamics was not the culprit of the broadening. Instead, the calorimetry and NMR data supported the conclusion that faster time scale structural dynamics (nanosecond-microsecond) were the source and therefore impart the conformationally plastic character of native EmrE capable of binding structurally diverse substrates. These findings provide a clear example how differences in membrane protein transporter structural dynamics between drug-free and bound states can have a direct impact on the physical properties of the lipid bilayer in an allosteric fashion.

Original languageEnglish (US)
Pages (from-to)8072-8080
Number of pages9
JournalJournal of the American Chemical Society
Volume136
Issue number22
DOIs
StatePublished - Jun 4 2014

    Fingerprint

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this