### Abstract

We establish a sharp instability theorem for the bound states of lowest energy of the nonlinear Klein-Gordon equation, u_{tt}-{white left-pointing small triangle}u+f(u)=0, and the nonlinear Schrödinger equation, -iu_{t}-{white left-pointing small triangle}u+f(u)=0.

Original language | English (US) |
---|---|

Pages (from-to) | 173-190 |

Number of pages | 18 |

Journal | Communications in Mathematical Physics |

Volume | 100 |

Issue number | 2 |

DOIs | |

State | Published - Jun 1985 |

### Fingerprint

### ASJC Scopus subject areas

- Statistical and Nonlinear Physics
- Physics and Astronomy(all)
- Mathematical Physics

### Cite this

*Communications in Mathematical Physics*,

*100*(2), 173-190. https://doi.org/10.1007/BF01212446

**Instability of nonlinear bound states.** / Shatah, Jalal; Strauss, Walter.

Research output: Contribution to journal › Article

*Communications in Mathematical Physics*, vol. 100, no. 2, pp. 173-190. https://doi.org/10.1007/BF01212446

}

TY - JOUR

T1 - Instability of nonlinear bound states

AU - Shatah, Jalal

AU - Strauss, Walter

PY - 1985/6

Y1 - 1985/6

N2 - We establish a sharp instability theorem for the bound states of lowest energy of the nonlinear Klein-Gordon equation, utt-{white left-pointing small triangle}u+f(u)=0, and the nonlinear Schrödinger equation, -iut-{white left-pointing small triangle}u+f(u)=0.

AB - We establish a sharp instability theorem for the bound states of lowest energy of the nonlinear Klein-Gordon equation, utt-{white left-pointing small triangle}u+f(u)=0, and the nonlinear Schrödinger equation, -iut-{white left-pointing small triangle}u+f(u)=0.

UR - http://www.scopus.com/inward/record.url?scp=0001420204&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001420204&partnerID=8YFLogxK

U2 - 10.1007/BF01212446

DO - 10.1007/BF01212446

M3 - Article

VL - 100

SP - 173

EP - 190

JO - Communications in Mathematical Physics

JF - Communications in Mathematical Physics

SN - 0010-3616

IS - 2

ER -