Induction of transcriptional activity of the cyclic adenosine monophosphate response element binding protein by parathyroid hormone and epidermal growth factor in osteoblastic cells

John T. Swarthout, Darren R. Tyson, S. C J Efcoat, Nicola Partridge

Research output: Contribution to journalArticle

Abstract

Previously, we have shown that parathyroid hormone (PTH) transactivation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) requires both serine 129 (S129) and serine 133 (S133) in rat osteosarcoma cells UMR 106-01 (UMR) cells. Furthermore, although protein kinase A (PKA) is responsible for phosphorylation at S133, glycogen synthase kinase 3β (GSK-3β) activity is required and may be responsible for phosphorylation of CREB at S129. Here, we show, using the GAL4-CREB reporter system, that epidermal growth factor (EGF) can transactivate CREB in UMR cells in addition to PTH. Additionally, treatment of UMR cells with both PTH and EGF results in greater than additive transactivation of CREB. Furthermore, using mutational analysis we show that S129 and S133 are required for EGF-induced transcriptional activity. EGF activates members of the MAPK family including p38 and extracellular signal-activated kinases (ERKs), and treatment of UMR cells with either the p38 inhibitor (SB203580) or the MEK inhibitor (PD98059) prevents phosphorylation of CREB at S133 by EGF but not by PTH. Treatment of cells with either SB203580 or PD98059 alone or together significantly inhibits transactivation of CREB by EGF but not by PTH, indicating that EGF regulates CREB phosphorylation and transactivation through p38 and ERKs and PTH does not. Finally, the greater than additive transactivation of CREB by PTH and EGF is significantly inhibited by the PKA inhibitor H-89 or by cotreatment with SB203580 and PD98059. Thus, several different signaling pathways in osteoblastic cells can converge on and regulate CREB activity. This suggests, in vivo, that circulating agents such as PTH and EGF are acting in concert to exert their effects.

Original languageEnglish (US)
Pages (from-to)1401-1407
Number of pages7
JournalJournal of Bone and Mineral Research
Volume17
Issue number8
StatePublished - 2002

Fingerprint

Cyclic AMP Response Element-Binding Protein
Response Elements
Parathyroid Hormone
Epidermal Growth Factor
Cyclic AMP
Carrier Proteins
Serine
Transcriptional Activation
Phosphorylation
Cyclic AMP-Dependent Protein Kinases
Phosphotransferases
Glycogen Synthase Kinase 3
Mitogen-Activated Protein Kinase Kinases
Osteosarcoma
Protein Kinase Inhibitors

Keywords

  • Cyclic adenosine monophosphate response element binding protein
  • Epidermal growth factor
  • MAPK
  • Osteoblasts
  • Parathyroid hormone

ASJC Scopus subject areas

  • Surgery

Cite this

@article{b1d9c610c2ae4b8f90c40f8cb8652a56,
title = "Induction of transcriptional activity of the cyclic adenosine monophosphate response element binding protein by parathyroid hormone and epidermal growth factor in osteoblastic cells",
abstract = "Previously, we have shown that parathyroid hormone (PTH) transactivation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) requires both serine 129 (S129) and serine 133 (S133) in rat osteosarcoma cells UMR 106-01 (UMR) cells. Furthermore, although protein kinase A (PKA) is responsible for phosphorylation at S133, glycogen synthase kinase 3β (GSK-3β) activity is required and may be responsible for phosphorylation of CREB at S129. Here, we show, using the GAL4-CREB reporter system, that epidermal growth factor (EGF) can transactivate CREB in UMR cells in addition to PTH. Additionally, treatment of UMR cells with both PTH and EGF results in greater than additive transactivation of CREB. Furthermore, using mutational analysis we show that S129 and S133 are required for EGF-induced transcriptional activity. EGF activates members of the MAPK family including p38 and extracellular signal-activated kinases (ERKs), and treatment of UMR cells with either the p38 inhibitor (SB203580) or the MEK inhibitor (PD98059) prevents phosphorylation of CREB at S133 by EGF but not by PTH. Treatment of cells with either SB203580 or PD98059 alone or together significantly inhibits transactivation of CREB by EGF but not by PTH, indicating that EGF regulates CREB phosphorylation and transactivation through p38 and ERKs and PTH does not. Finally, the greater than additive transactivation of CREB by PTH and EGF is significantly inhibited by the PKA inhibitor H-89 or by cotreatment with SB203580 and PD98059. Thus, several different signaling pathways in osteoblastic cells can converge on and regulate CREB activity. This suggests, in vivo, that circulating agents such as PTH and EGF are acting in concert to exert their effects.",
keywords = "Cyclic adenosine monophosphate response element binding protein, Epidermal growth factor, MAPK, Osteoblasts, Parathyroid hormone",
author = "Swarthout, {John T.} and Tyson, {Darren R.} and Efcoat, {S. C J} and Nicola Partridge",
year = "2002",
language = "English (US)",
volume = "17",
pages = "1401--1407",
journal = "Journal of Bone and Mineral Research",
issn = "0884-0431",
publisher = "Wiley-Blackwell",
number = "8",

}

TY - JOUR

T1 - Induction of transcriptional activity of the cyclic adenosine monophosphate response element binding protein by parathyroid hormone and epidermal growth factor in osteoblastic cells

AU - Swarthout, John T.

AU - Tyson, Darren R.

AU - Efcoat, S. C J

AU - Partridge, Nicola

PY - 2002

Y1 - 2002

N2 - Previously, we have shown that parathyroid hormone (PTH) transactivation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) requires both serine 129 (S129) and serine 133 (S133) in rat osteosarcoma cells UMR 106-01 (UMR) cells. Furthermore, although protein kinase A (PKA) is responsible for phosphorylation at S133, glycogen synthase kinase 3β (GSK-3β) activity is required and may be responsible for phosphorylation of CREB at S129. Here, we show, using the GAL4-CREB reporter system, that epidermal growth factor (EGF) can transactivate CREB in UMR cells in addition to PTH. Additionally, treatment of UMR cells with both PTH and EGF results in greater than additive transactivation of CREB. Furthermore, using mutational analysis we show that S129 and S133 are required for EGF-induced transcriptional activity. EGF activates members of the MAPK family including p38 and extracellular signal-activated kinases (ERKs), and treatment of UMR cells with either the p38 inhibitor (SB203580) or the MEK inhibitor (PD98059) prevents phosphorylation of CREB at S133 by EGF but not by PTH. Treatment of cells with either SB203580 or PD98059 alone or together significantly inhibits transactivation of CREB by EGF but not by PTH, indicating that EGF regulates CREB phosphorylation and transactivation through p38 and ERKs and PTH does not. Finally, the greater than additive transactivation of CREB by PTH and EGF is significantly inhibited by the PKA inhibitor H-89 or by cotreatment with SB203580 and PD98059. Thus, several different signaling pathways in osteoblastic cells can converge on and regulate CREB activity. This suggests, in vivo, that circulating agents such as PTH and EGF are acting in concert to exert their effects.

AB - Previously, we have shown that parathyroid hormone (PTH) transactivation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) requires both serine 129 (S129) and serine 133 (S133) in rat osteosarcoma cells UMR 106-01 (UMR) cells. Furthermore, although protein kinase A (PKA) is responsible for phosphorylation at S133, glycogen synthase kinase 3β (GSK-3β) activity is required and may be responsible for phosphorylation of CREB at S129. Here, we show, using the GAL4-CREB reporter system, that epidermal growth factor (EGF) can transactivate CREB in UMR cells in addition to PTH. Additionally, treatment of UMR cells with both PTH and EGF results in greater than additive transactivation of CREB. Furthermore, using mutational analysis we show that S129 and S133 are required for EGF-induced transcriptional activity. EGF activates members of the MAPK family including p38 and extracellular signal-activated kinases (ERKs), and treatment of UMR cells with either the p38 inhibitor (SB203580) or the MEK inhibitor (PD98059) prevents phosphorylation of CREB at S133 by EGF but not by PTH. Treatment of cells with either SB203580 or PD98059 alone or together significantly inhibits transactivation of CREB by EGF but not by PTH, indicating that EGF regulates CREB phosphorylation and transactivation through p38 and ERKs and PTH does not. Finally, the greater than additive transactivation of CREB by PTH and EGF is significantly inhibited by the PKA inhibitor H-89 or by cotreatment with SB203580 and PD98059. Thus, several different signaling pathways in osteoblastic cells can converge on and regulate CREB activity. This suggests, in vivo, that circulating agents such as PTH and EGF are acting in concert to exert their effects.

KW - Cyclic adenosine monophosphate response element binding protein

KW - Epidermal growth factor

KW - MAPK

KW - Osteoblasts

KW - Parathyroid hormone

UR - http://www.scopus.com/inward/record.url?scp=0035992639&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035992639&partnerID=8YFLogxK

M3 - Article

C2 - 12162494

AN - SCOPUS:0035992639

VL - 17

SP - 1401

EP - 1407

JO - Journal of Bone and Mineral Research

JF - Journal of Bone and Mineral Research

SN - 0884-0431

IS - 8

ER -