Abstract
We study here the limit of global weak solutions of the compressible Navier-Stokes equations (in the isentropic regime) in a bounded domain, with Dirichlet boundary conditions on the velocity, as the Mach number goes to 0. We show that the velocity converges weakly in L2 to a global weak solution of the incompressible Navier-Stokes equations. Moreover, the convergence in L2 is strong under some geometrical assumption on Ω.
Original language | English (US) |
---|---|
Pages (from-to) | 461-471 |
Number of pages | 11 |
Journal | Journal des Mathematiques Pures et Appliquees |
Volume | 78 |
Issue number | 5 |
State | Published - Jun 10 1999 |
Fingerprint
ASJC Scopus subject areas
- Mathematics(all)
- Applied Mathematics
Cite this
Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. / Desjardins, B.; Grenier, E.; Lions, P. L.; Masmoudi, N.
In: Journal des Mathematiques Pures et Appliquees, Vol. 78, No. 5, 10.06.1999, p. 461-471.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions
AU - Desjardins, B.
AU - Grenier, E.
AU - Lions, P. L.
AU - Masmoudi, N.
PY - 1999/6/10
Y1 - 1999/6/10
N2 - We study here the limit of global weak solutions of the compressible Navier-Stokes equations (in the isentropic regime) in a bounded domain, with Dirichlet boundary conditions on the velocity, as the Mach number goes to 0. We show that the velocity converges weakly in L2 to a global weak solution of the incompressible Navier-Stokes equations. Moreover, the convergence in L2 is strong under some geometrical assumption on Ω.
AB - We study here the limit of global weak solutions of the compressible Navier-Stokes equations (in the isentropic regime) in a bounded domain, with Dirichlet boundary conditions on the velocity, as the Mach number goes to 0. We show that the velocity converges weakly in L2 to a global weak solution of the incompressible Navier-Stokes equations. Moreover, the convergence in L2 is strong under some geometrical assumption on Ω.
UR - http://www.scopus.com/inward/record.url?scp=0033542301&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033542301&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0033542301
VL - 78
SP - 461
EP - 471
JO - Journal des Mathematiques Pures et Appliquees
JF - Journal des Mathematiques Pures et Appliquees
SN - 0021-7824
IS - 5
ER -