Incompressible, inviscid limit of the compressible Navier-Stokes system

Research output: Contribution to journalArticle

Abstract

We prove some asymptotic results concerning global (weak) solutions of compressible isentropic Navier-Stokes equations. More precisely, we establish the convergence towards solutions of incompressible Euler equations, as the density becomes constant, the Mach number goes to 0 and the Reynolds number goes to infinity.

Original languageEnglish (US)
Pages (from-to)199-224
Number of pages26
JournalAnnales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis
Volume18
Issue number2
DOIs
StatePublished - Mar 2001

Fingerprint

Inviscid Limit
Incompressible Euler Equations
Convergence of Solutions
Global Weak Solutions
Compressible Navier-Stokes Equations
Navier-Stokes System
Reynolds number
Infinity
Euler equations
Navier Stokes equations
Mach number

ASJC Scopus subject areas

  • Analysis

Cite this

@article{6680b54c662248c4887d80b017d02882,
title = "Incompressible, inviscid limit of the compressible Navier-Stokes system",
abstract = "We prove some asymptotic results concerning global (weak) solutions of compressible isentropic Navier-Stokes equations. More precisely, we establish the convergence towards solutions of incompressible Euler equations, as the density becomes constant, the Mach number goes to 0 and the Reynolds number goes to infinity.",
author = "Nader Masmoudi",
year = "2001",
month = "3",
doi = "10.1016/S0294-1449(00)00123-2",
language = "English (US)",
volume = "18",
pages = "199--224",
journal = "Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis",
issn = "0294-1449",
publisher = "Elsevier Masson SAS",
number = "2",

}

TY - JOUR

T1 - Incompressible, inviscid limit of the compressible Navier-Stokes system

AU - Masmoudi, Nader

PY - 2001/3

Y1 - 2001/3

N2 - We prove some asymptotic results concerning global (weak) solutions of compressible isentropic Navier-Stokes equations. More precisely, we establish the convergence towards solutions of incompressible Euler equations, as the density becomes constant, the Mach number goes to 0 and the Reynolds number goes to infinity.

AB - We prove some asymptotic results concerning global (weak) solutions of compressible isentropic Navier-Stokes equations. More precisely, we establish the convergence towards solutions of incompressible Euler equations, as the density becomes constant, the Mach number goes to 0 and the Reynolds number goes to infinity.

UR - http://www.scopus.com/inward/record.url?scp=0012100552&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0012100552&partnerID=8YFLogxK

U2 - 10.1016/S0294-1449(00)00123-2

DO - 10.1016/S0294-1449(00)00123-2

M3 - Article

VL - 18

SP - 199

EP - 224

JO - Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis

JF - Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis

SN - 0294-1449

IS - 2

ER -