Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy

A. J. Cheng, M. Manno, A. Khare, C. Leighton, S. A. Campbell, Eray Aydil

Research output: Contribution to journalArticle

Abstract

Copper zinc tin sulfide (Cu2ZnSnS4 or CZTS) is a potential candidate for next generation thin film solar cells because it contains abundant and nontoxic elements and exhibits high light absorption. Thin films of CZTS are typically synthesized by sulfidizing a stack of zinc, copper, and tin films. In addition to CZTS, a variety of binary and ternary metal sulfides can form and distinguishing among phases with similar crystal structure can be difficult. Herein, the authors show that confocal Raman spectroscopy and imaging can distinguish between CZTS and the other binary and ternary sulfides. Specifically, Raman spectroscopy was used to detect and distinguish between CZTS (338 cm-1), Cu2SnS3 (298 cm-1), and Cu4SnS4 (318 cm-1) phases through their characteristic scattering peaks. Confocal Raman spectroscopy was then used to image the distribution of coexisting phases and is demonstrated to be a useful tool for examining the heterogeneity of CZTS films. The authors show that, during sulfidation of a zinc/copper/tin film stack, ternary sulfides of copper and tin, such as Cu2SnS3 form first and are then converted to CZTS. The reason for formation of Cu2SnS3 as an intermediary to CZTS is the strong tendency of copper and tin to form intermetallic alloys upon evaporation. These alloys sulfidize and form copper tin sulfides first, and then eventually convert to CZTS in the presence of zinc. As a consequence, films sulfidized for 8 h at 400C contain both CZTS and Cu2SnS3, whereas films sulfidized at 500C contain nearly phase-pure CZTS. In addition, using Cu K radiation, the authors identify three CZTS X-ray diffraction peaks at 37.1 [(202)], 38 [(211)], and 44.9 [(105) and (213)], which are absent in ZnS and very weak in Cu2SnS3.

Original languageEnglish (US)
Article number051203
JournalJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
Volume29
Issue number5
DOIs
StatePublished - Sep 1 2011

Fingerprint

Tin
Raman spectroscopy
Copper
tin
sulfides
Imaging techniques
Thin films
copper
Zinc
Sulfides
thin films
zinc
sulfidation
electromagnetic absorption
Light absorption
Intermetallics
intermetallics
Cu2ZnSnS4
Evaporation
tendencies

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Cite this

Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy. / Cheng, A. J.; Manno, M.; Khare, A.; Leighton, C.; Campbell, S. A.; Aydil, Eray.

In: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, Vol. 29, No. 5, 051203, 01.09.2011.

Research output: Contribution to journalArticle

@article{edc1e90d63c54c02bdd7f5f2fff049dc,
title = "Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy",
abstract = "Copper zinc tin sulfide (Cu2ZnSnS4 or CZTS) is a potential candidate for next generation thin film solar cells because it contains abundant and nontoxic elements and exhibits high light absorption. Thin films of CZTS are typically synthesized by sulfidizing a stack of zinc, copper, and tin films. In addition to CZTS, a variety of binary and ternary metal sulfides can form and distinguishing among phases with similar crystal structure can be difficult. Herein, the authors show that confocal Raman spectroscopy and imaging can distinguish between CZTS and the other binary and ternary sulfides. Specifically, Raman spectroscopy was used to detect and distinguish between CZTS (338 cm-1), Cu2SnS3 (298 cm-1), and Cu4SnS4 (318 cm-1) phases through their characteristic scattering peaks. Confocal Raman spectroscopy was then used to image the distribution of coexisting phases and is demonstrated to be a useful tool for examining the heterogeneity of CZTS films. The authors show that, during sulfidation of a zinc/copper/tin film stack, ternary sulfides of copper and tin, such as Cu2SnS3 form first and are then converted to CZTS. The reason for formation of Cu2SnS3 as an intermediary to CZTS is the strong tendency of copper and tin to form intermetallic alloys upon evaporation. These alloys sulfidize and form copper tin sulfides first, and then eventually convert to CZTS in the presence of zinc. As a consequence, films sulfidized for 8 h at 400C contain both CZTS and Cu2SnS3, whereas films sulfidized at 500C contain nearly phase-pure CZTS. In addition, using Cu K radiation, the authors identify three CZTS X-ray diffraction peaks at 37.1 [(202)], 38 [(211)], and 44.9 [(105) and (213)], which are absent in ZnS and very weak in Cu2SnS3.",
author = "Cheng, {A. J.} and M. Manno and A. Khare and C. Leighton and Campbell, {S. A.} and Eray Aydil",
year = "2011",
month = "9",
day = "1",
doi = "10.1116/1.3625249",
language = "English (US)",
volume = "29",
journal = "Journal of Vacuum Science and Technology A",
issn = "0734-2101",
publisher = "AVS Science and Technology Society",
number = "5",

}

TY - JOUR

T1 - Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy

AU - Cheng, A. J.

AU - Manno, M.

AU - Khare, A.

AU - Leighton, C.

AU - Campbell, S. A.

AU - Aydil, Eray

PY - 2011/9/1

Y1 - 2011/9/1

N2 - Copper zinc tin sulfide (Cu2ZnSnS4 or CZTS) is a potential candidate for next generation thin film solar cells because it contains abundant and nontoxic elements and exhibits high light absorption. Thin films of CZTS are typically synthesized by sulfidizing a stack of zinc, copper, and tin films. In addition to CZTS, a variety of binary and ternary metal sulfides can form and distinguishing among phases with similar crystal structure can be difficult. Herein, the authors show that confocal Raman spectroscopy and imaging can distinguish between CZTS and the other binary and ternary sulfides. Specifically, Raman spectroscopy was used to detect and distinguish between CZTS (338 cm-1), Cu2SnS3 (298 cm-1), and Cu4SnS4 (318 cm-1) phases through their characteristic scattering peaks. Confocal Raman spectroscopy was then used to image the distribution of coexisting phases and is demonstrated to be a useful tool for examining the heterogeneity of CZTS films. The authors show that, during sulfidation of a zinc/copper/tin film stack, ternary sulfides of copper and tin, such as Cu2SnS3 form first and are then converted to CZTS. The reason for formation of Cu2SnS3 as an intermediary to CZTS is the strong tendency of copper and tin to form intermetallic alloys upon evaporation. These alloys sulfidize and form copper tin sulfides first, and then eventually convert to CZTS in the presence of zinc. As a consequence, films sulfidized for 8 h at 400C contain both CZTS and Cu2SnS3, whereas films sulfidized at 500C contain nearly phase-pure CZTS. In addition, using Cu K radiation, the authors identify three CZTS X-ray diffraction peaks at 37.1 [(202)], 38 [(211)], and 44.9 [(105) and (213)], which are absent in ZnS and very weak in Cu2SnS3.

AB - Copper zinc tin sulfide (Cu2ZnSnS4 or CZTS) is a potential candidate for next generation thin film solar cells because it contains abundant and nontoxic elements and exhibits high light absorption. Thin films of CZTS are typically synthesized by sulfidizing a stack of zinc, copper, and tin films. In addition to CZTS, a variety of binary and ternary metal sulfides can form and distinguishing among phases with similar crystal structure can be difficult. Herein, the authors show that confocal Raman spectroscopy and imaging can distinguish between CZTS and the other binary and ternary sulfides. Specifically, Raman spectroscopy was used to detect and distinguish between CZTS (338 cm-1), Cu2SnS3 (298 cm-1), and Cu4SnS4 (318 cm-1) phases through their characteristic scattering peaks. Confocal Raman spectroscopy was then used to image the distribution of coexisting phases and is demonstrated to be a useful tool for examining the heterogeneity of CZTS films. The authors show that, during sulfidation of a zinc/copper/tin film stack, ternary sulfides of copper and tin, such as Cu2SnS3 form first and are then converted to CZTS. The reason for formation of Cu2SnS3 as an intermediary to CZTS is the strong tendency of copper and tin to form intermetallic alloys upon evaporation. These alloys sulfidize and form copper tin sulfides first, and then eventually convert to CZTS in the presence of zinc. As a consequence, films sulfidized for 8 h at 400C contain both CZTS and Cu2SnS3, whereas films sulfidized at 500C contain nearly phase-pure CZTS. In addition, using Cu K radiation, the authors identify three CZTS X-ray diffraction peaks at 37.1 [(202)], 38 [(211)], and 44.9 [(105) and (213)], which are absent in ZnS and very weak in Cu2SnS3.

UR - http://www.scopus.com/inward/record.url?scp=80052399493&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80052399493&partnerID=8YFLogxK

U2 - 10.1116/1.3625249

DO - 10.1116/1.3625249

M3 - Article

VL - 29

JO - Journal of Vacuum Science and Technology A

JF - Journal of Vacuum Science and Technology A

SN - 0734-2101

IS - 5

M1 - 051203

ER -