Hypersurfaces quartiques de dimension 3: Non-rationalité stable

Jean Louis Colliot-Thélène, Alena Pirutka

Research output: Contribution to journalArticle

Abstract

There are (many) smooth quartic threefolds over the complex field which are not stably rational. More precisely, their degree zero Chow group is not universally equal to ℤ. The proof uses a variation of a method due to C. Voisin. The specialisation argument we use yields examples defined over a number field.

Original languageFrench
Pages (from-to)371-397
Number of pages27
JournalAnnales Scientifiques de l'Ecole Normale Superieure
Volume49
Issue number2
StatePublished - 2016

Fingerprint

Chow Groups
Threefolds
Specialization
Quartic
Number field
Hypersurface
Zero

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Hypersurfaces quartiques de dimension 3 : Non-rationalité stable. / Colliot-Thélène, Jean Louis; Pirutka, Alena.

In: Annales Scientifiques de l'Ecole Normale Superieure, Vol. 49, No. 2, 2016, p. 371-397.

Research output: Contribution to journalArticle

@article{eb958c3da4074ffabca4af9e4897c2aa,
title = "Hypersurfaces quartiques de dimension 3: Non-rationalit{\'e} stable",
abstract = "There are (many) smooth quartic threefolds over the complex field which are not stably rational. More precisely, their degree zero Chow group is not universally equal to ℤ. The proof uses a variation of a method due to C. Voisin. The specialisation argument we use yields examples defined over a number field.",
author = "Colliot-Th{\'e}l{\`e}ne, {Jean Louis} and Alena Pirutka",
year = "2016",
language = "French",
volume = "49",
pages = "371--397",
journal = "Annales Scientifiques de l'Ecole Normale Superieure",
issn = "0012-9593",
publisher = "Societe Mathematique de France",
number = "2",

}

TY - JOUR

T1 - Hypersurfaces quartiques de dimension 3

T2 - Non-rationalité stable

AU - Colliot-Thélène, Jean Louis

AU - Pirutka, Alena

PY - 2016

Y1 - 2016

N2 - There are (many) smooth quartic threefolds over the complex field which are not stably rational. More precisely, their degree zero Chow group is not universally equal to ℤ. The proof uses a variation of a method due to C. Voisin. The specialisation argument we use yields examples defined over a number field.

AB - There are (many) smooth quartic threefolds over the complex field which are not stably rational. More precisely, their degree zero Chow group is not universally equal to ℤ. The proof uses a variation of a method due to C. Voisin. The specialisation argument we use yields examples defined over a number field.

UR - http://www.scopus.com/inward/record.url?scp=84987951282&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84987951282&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84987951282

VL - 49

SP - 371

EP - 397

JO - Annales Scientifiques de l'Ecole Normale Superieure

JF - Annales Scientifiques de l'Ecole Normale Superieure

SN - 0012-9593

IS - 2

ER -