Human virus and bacteriophage inactivation in clear water by simulated sunlight compared to bacteriophage inactivation at a Southern California beach

David C. Love, Andrea Silverman, Kara L. Nelson

Research output: Contribution to journalArticle

Abstract

Few quantitative data exist on human virus inactivation by sunlight and the relationship between human and indicator viruses under sunlit conditions. We investigated the effects of sunlight on human viruses (adenovirus type 2, poliovirus type 3) and bacteriophages (MS2, Q-Beta SP, Fi, M13, PRD1, Phi-X174, and coliphages isolated from Avalon Bay, California). Viruses were inoculated into phosphate buffered saline or seawater, exposed to a laboratory solar simulator for ≤12 h, and enumerated by double agar layer or cell culture to derive first-order inactivation rate constants (kobs, h -1). The viruses most resistant to sunlight were adenovirus type 2 (kobs= 0.59 ± 0.04 h-1) and bacteriophage MS2 (kobs= 0.43 ± 0.02 h-1), which suggests MS2 may be a conservative indicator for sunlight resistant human viruses in clear water when sunlight inactivation is the main removal mechanism. Reasonable agreement was observed between somatic coliphage inactivation rates measured in the solar simulator (kmean = 1.81 h-1) and somatic coliphages measured in the surf zone during a field campaign at Avalon Bay during similar sunlight intensity (k = 0.75 h-1 at log-RMSE minimum; k range = 0.54 h-1 to >1.88 h-1; Boehm, A. B. et al. Environ. Sci. Technol. 2009, 43, (21), 8046-8052). Hence, measuring sunlight inactivation rates of viruses in the laboratory can be used to estimate inactivation in the environment under similar sunlight and water quality conditions.

Original languageEnglish (US)
Pages (from-to)6965-6970
Number of pages6
JournalEnvironmental Science and Technology
Volume44
Issue number18
DOIs
StatePublished - Sep 15 2010

Fingerprint

Bacteriophages
bacteriophage
Beaches
Viruses
virus
beach
Water
water
simulator
Simulators
surf zone
Seawater
Cell culture
agar
Water quality
Agar
Rate constants
Phosphates
phosphate
seawater

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry

Cite this

@article{fa94ccb46d69472a86a6d8e46a118d0e,
title = "Human virus and bacteriophage inactivation in clear water by simulated sunlight compared to bacteriophage inactivation at a Southern California beach",
abstract = "Few quantitative data exist on human virus inactivation by sunlight and the relationship between human and indicator viruses under sunlit conditions. We investigated the effects of sunlight on human viruses (adenovirus type 2, poliovirus type 3) and bacteriophages (MS2, Q-Beta SP, Fi, M13, PRD1, Phi-X174, and coliphages isolated from Avalon Bay, California). Viruses were inoculated into phosphate buffered saline or seawater, exposed to a laboratory solar simulator for ≤12 h, and enumerated by double agar layer or cell culture to derive first-order inactivation rate constants (kobs, h -1). The viruses most resistant to sunlight were adenovirus type 2 (kobs= 0.59 ± 0.04 h-1) and bacteriophage MS2 (kobs= 0.43 ± 0.02 h-1), which suggests MS2 may be a conservative indicator for sunlight resistant human viruses in clear water when sunlight inactivation is the main removal mechanism. Reasonable agreement was observed between somatic coliphage inactivation rates measured in the solar simulator (kmean = 1.81 h-1) and somatic coliphages measured in the surf zone during a field campaign at Avalon Bay during similar sunlight intensity (k = 0.75 h-1 at log-RMSE minimum; k range = 0.54 h-1 to >1.88 h-1; Boehm, A. B. et al. Environ. Sci. Technol. 2009, 43, (21), 8046-8052). Hence, measuring sunlight inactivation rates of viruses in the laboratory can be used to estimate inactivation in the environment under similar sunlight and water quality conditions.",
author = "Love, {David C.} and Andrea Silverman and Nelson, {Kara L.}",
year = "2010",
month = "9",
day = "15",
doi = "10.1021/es1001924",
language = "English (US)",
volume = "44",
pages = "6965--6970",
journal = "Environmental Science & Technology",
issn = "0013-936X",
publisher = "American Chemical Society",
number = "18",

}

TY - JOUR

T1 - Human virus and bacteriophage inactivation in clear water by simulated sunlight compared to bacteriophage inactivation at a Southern California beach

AU - Love, David C.

AU - Silverman, Andrea

AU - Nelson, Kara L.

PY - 2010/9/15

Y1 - 2010/9/15

N2 - Few quantitative data exist on human virus inactivation by sunlight and the relationship between human and indicator viruses under sunlit conditions. We investigated the effects of sunlight on human viruses (adenovirus type 2, poliovirus type 3) and bacteriophages (MS2, Q-Beta SP, Fi, M13, PRD1, Phi-X174, and coliphages isolated from Avalon Bay, California). Viruses were inoculated into phosphate buffered saline or seawater, exposed to a laboratory solar simulator for ≤12 h, and enumerated by double agar layer or cell culture to derive first-order inactivation rate constants (kobs, h -1). The viruses most resistant to sunlight were adenovirus type 2 (kobs= 0.59 ± 0.04 h-1) and bacteriophage MS2 (kobs= 0.43 ± 0.02 h-1), which suggests MS2 may be a conservative indicator for sunlight resistant human viruses in clear water when sunlight inactivation is the main removal mechanism. Reasonable agreement was observed between somatic coliphage inactivation rates measured in the solar simulator (kmean = 1.81 h-1) and somatic coliphages measured in the surf zone during a field campaign at Avalon Bay during similar sunlight intensity (k = 0.75 h-1 at log-RMSE minimum; k range = 0.54 h-1 to >1.88 h-1; Boehm, A. B. et al. Environ. Sci. Technol. 2009, 43, (21), 8046-8052). Hence, measuring sunlight inactivation rates of viruses in the laboratory can be used to estimate inactivation in the environment under similar sunlight and water quality conditions.

AB - Few quantitative data exist on human virus inactivation by sunlight and the relationship between human and indicator viruses under sunlit conditions. We investigated the effects of sunlight on human viruses (adenovirus type 2, poliovirus type 3) and bacteriophages (MS2, Q-Beta SP, Fi, M13, PRD1, Phi-X174, and coliphages isolated from Avalon Bay, California). Viruses were inoculated into phosphate buffered saline or seawater, exposed to a laboratory solar simulator for ≤12 h, and enumerated by double agar layer or cell culture to derive first-order inactivation rate constants (kobs, h -1). The viruses most resistant to sunlight were adenovirus type 2 (kobs= 0.59 ± 0.04 h-1) and bacteriophage MS2 (kobs= 0.43 ± 0.02 h-1), which suggests MS2 may be a conservative indicator for sunlight resistant human viruses in clear water when sunlight inactivation is the main removal mechanism. Reasonable agreement was observed between somatic coliphage inactivation rates measured in the solar simulator (kmean = 1.81 h-1) and somatic coliphages measured in the surf zone during a field campaign at Avalon Bay during similar sunlight intensity (k = 0.75 h-1 at log-RMSE minimum; k range = 0.54 h-1 to >1.88 h-1; Boehm, A. B. et al. Environ. Sci. Technol. 2009, 43, (21), 8046-8052). Hence, measuring sunlight inactivation rates of viruses in the laboratory can be used to estimate inactivation in the environment under similar sunlight and water quality conditions.

UR - http://www.scopus.com/inward/record.url?scp=77956544853&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77956544853&partnerID=8YFLogxK

U2 - 10.1021/es1001924

DO - 10.1021/es1001924

M3 - Article

VL - 44

SP - 6965

EP - 6970

JO - Environmental Science & Technology

JF - Environmental Science & Technology

SN - 0013-936X

IS - 18

ER -