Homogenization of elliptic systems with Neumann boundary conditions

Carlos E. Kenig, Fang-Hua Lin, Zhongwei Shen

Research output: Contribution to journalArticle

Abstract

For a family of second-order elliptic systems with rapidly oscillating periodic coefficients in a C1,α domain, we establish uniform W1,p estimates, Lipschitz estimates, and nontangential maximal function estimates on solutions with Neumann boundary conditions.

Original languageEnglish (US)
Pages (from-to)901-937
Number of pages37
JournalJournal of the American Mathematical Society
Volume26
Issue number4
DOIs
StatePublished - 2013

Fingerprint

Elliptic Systems
Neumann Boundary Conditions
Homogenization
Boundary conditions
Estimate
Oscillating Coefficients
Maximal Function
Periodic Coefficients
Second-order Systems
Lipschitz

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Homogenization of elliptic systems with Neumann boundary conditions. / Kenig, Carlos E.; Lin, Fang-Hua; Shen, Zhongwei.

In: Journal of the American Mathematical Society, Vol. 26, No. 4, 2013, p. 901-937.

Research output: Contribution to journalArticle

@article{c53a9c6f92704db891fb1103fb469215,
title = "Homogenization of elliptic systems with Neumann boundary conditions",
abstract = "For a family of second-order elliptic systems with rapidly oscillating periodic coefficients in a C1,α domain, we establish uniform W1,p estimates, Lipschitz estimates, and nontangential maximal function estimates on solutions with Neumann boundary conditions.",
author = "Kenig, {Carlos E.} and Fang-Hua Lin and Zhongwei Shen",
year = "2013",
doi = "10.1090/S0894-0347-2013-00769-9",
language = "English (US)",
volume = "26",
pages = "901--937",
journal = "Journal of the American Mathematical Society",
issn = "0894-0347",
publisher = "American Mathematical Society",
number = "4",

}

TY - JOUR

T1 - Homogenization of elliptic systems with Neumann boundary conditions

AU - Kenig, Carlos E.

AU - Lin, Fang-Hua

AU - Shen, Zhongwei

PY - 2013

Y1 - 2013

N2 - For a family of second-order elliptic systems with rapidly oscillating periodic coefficients in a C1,α domain, we establish uniform W1,p estimates, Lipschitz estimates, and nontangential maximal function estimates on solutions with Neumann boundary conditions.

AB - For a family of second-order elliptic systems with rapidly oscillating periodic coefficients in a C1,α domain, we establish uniform W1,p estimates, Lipschitz estimates, and nontangential maximal function estimates on solutions with Neumann boundary conditions.

UR - http://www.scopus.com/inward/record.url?scp=84880348022&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84880348022&partnerID=8YFLogxK

U2 - 10.1090/S0894-0347-2013-00769-9

DO - 10.1090/S0894-0347-2013-00769-9

M3 - Article

AN - SCOPUS:84880348022

VL - 26

SP - 901

EP - 937

JO - Journal of the American Mathematical Society

JF - Journal of the American Mathematical Society

SN - 0894-0347

IS - 4

ER -