Hierarchical decision processes that operate over distinct timescales underlie choice and changes in strategy

Braden A. Purcell, Roozbeh Kiani

Research output: Contribution to journalArticle

Abstract

Decision-making in a natural environment depends on a hierarchy of interacting decision processes. A high-level strategy guides ongoing choices, and the outcomes of those choices determine whether or not the strategy should change. When the right decision strategy is uncertain, as in most natural settings, feedback becomes ambiguous because negative outcomes may be due to limited information or bad strategy. Disambiguating the cause of feedback requires active inference and is key to updating the strategy. We hypothesize that the expected accuracy of a choice plays a crucial rule in this inference, and setting the strategy depends on integration of outcome and expectations across choices. We test this hypothesis with a task in which subjects report the net direction of random dot kinematograms with varying difficulty while the correct stimulus?response association undergoes invisible and unpredictable switches every few trials. We show that subjects treat negative feedback as evidence for a switch but weigh it with their expected accuracy. Subjects accumulate switch evidence (in units of log-likelihood ratio) across trials and update their response strategy when accumulated evidence reaches a bound. A computational framework based on these principles quantitatively explains all aspects of the behavior, providing a plausible neural mechanism for the implementation of hierarchical multiscale decision processes. We suggest that a similar neural computation-bounded accumulation of evidence-underlies both the choice and switches in the strategy that govern the choice, and that expected accuracy of a choice represents a key link between the levels of the decisionmaking hierarchy.

Original languageEnglish (US)
Pages (from-to)E4531-E4540
JournalProceedings of the National Academy of Sciences of the United States of America
Volume113
Issue number31
DOIs
StatePublished - Aug 2 2016

Fingerprint

Decision Making
Direction compound

ASJC Scopus subject areas

  • General

Cite this

@article{8c91f434341d43c5bf0394d57a39e672,
title = "Hierarchical decision processes that operate over distinct timescales underlie choice and changes in strategy",
abstract = "Decision-making in a natural environment depends on a hierarchy of interacting decision processes. A high-level strategy guides ongoing choices, and the outcomes of those choices determine whether or not the strategy should change. When the right decision strategy is uncertain, as in most natural settings, feedback becomes ambiguous because negative outcomes may be due to limited information or bad strategy. Disambiguating the cause of feedback requires active inference and is key to updating the strategy. We hypothesize that the expected accuracy of a choice plays a crucial rule in this inference, and setting the strategy depends on integration of outcome and expectations across choices. We test this hypothesis with a task in which subjects report the net direction of random dot kinematograms with varying difficulty while the correct stimulus?response association undergoes invisible and unpredictable switches every few trials. We show that subjects treat negative feedback as evidence for a switch but weigh it with their expected accuracy. Subjects accumulate switch evidence (in units of log-likelihood ratio) across trials and update their response strategy when accumulated evidence reaches a bound. A computational framework based on these principles quantitatively explains all aspects of the behavior, providing a plausible neural mechanism for the implementation of hierarchical multiscale decision processes. We suggest that a similar neural computation-bounded accumulation of evidence-underlies both the choice and switches in the strategy that govern the choice, and that expected accuracy of a choice represents a key link between the levels of the decisionmaking hierarchy.",
author = "Purcell, {Braden A.} and Roozbeh Kiani",
year = "2016",
month = "8",
day = "2",
doi = "10.1073/pnas.1524685113",
language = "English (US)",
volume = "113",
pages = "E4531--E4540",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "31",

}

TY - JOUR

T1 - Hierarchical decision processes that operate over distinct timescales underlie choice and changes in strategy

AU - Purcell, Braden A.

AU - Kiani, Roozbeh

PY - 2016/8/2

Y1 - 2016/8/2

N2 - Decision-making in a natural environment depends on a hierarchy of interacting decision processes. A high-level strategy guides ongoing choices, and the outcomes of those choices determine whether or not the strategy should change. When the right decision strategy is uncertain, as in most natural settings, feedback becomes ambiguous because negative outcomes may be due to limited information or bad strategy. Disambiguating the cause of feedback requires active inference and is key to updating the strategy. We hypothesize that the expected accuracy of a choice plays a crucial rule in this inference, and setting the strategy depends on integration of outcome and expectations across choices. We test this hypothesis with a task in which subjects report the net direction of random dot kinematograms with varying difficulty while the correct stimulus?response association undergoes invisible and unpredictable switches every few trials. We show that subjects treat negative feedback as evidence for a switch but weigh it with their expected accuracy. Subjects accumulate switch evidence (in units of log-likelihood ratio) across trials and update their response strategy when accumulated evidence reaches a bound. A computational framework based on these principles quantitatively explains all aspects of the behavior, providing a plausible neural mechanism for the implementation of hierarchical multiscale decision processes. We suggest that a similar neural computation-bounded accumulation of evidence-underlies both the choice and switches in the strategy that govern the choice, and that expected accuracy of a choice represents a key link between the levels of the decisionmaking hierarchy.

AB - Decision-making in a natural environment depends on a hierarchy of interacting decision processes. A high-level strategy guides ongoing choices, and the outcomes of those choices determine whether or not the strategy should change. When the right decision strategy is uncertain, as in most natural settings, feedback becomes ambiguous because negative outcomes may be due to limited information or bad strategy. Disambiguating the cause of feedback requires active inference and is key to updating the strategy. We hypothesize that the expected accuracy of a choice plays a crucial rule in this inference, and setting the strategy depends on integration of outcome and expectations across choices. We test this hypothesis with a task in which subjects report the net direction of random dot kinematograms with varying difficulty while the correct stimulus?response association undergoes invisible and unpredictable switches every few trials. We show that subjects treat negative feedback as evidence for a switch but weigh it with their expected accuracy. Subjects accumulate switch evidence (in units of log-likelihood ratio) across trials and update their response strategy when accumulated evidence reaches a bound. A computational framework based on these principles quantitatively explains all aspects of the behavior, providing a plausible neural mechanism for the implementation of hierarchical multiscale decision processes. We suggest that a similar neural computation-bounded accumulation of evidence-underlies both the choice and switches in the strategy that govern the choice, and that expected accuracy of a choice represents a key link between the levels of the decisionmaking hierarchy.

UR - http://www.scopus.com/inward/record.url?scp=84982685000&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84982685000&partnerID=8YFLogxK

U2 - 10.1073/pnas.1524685113

DO - 10.1073/pnas.1524685113

M3 - Article

C2 - 27432960

AN - SCOPUS:84982685000

VL - 113

SP - E4531-E4540

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 31

ER -