### Abstract

For Gaussian primordial fluctuations the relationship between galaxy and matter overdensities, bias, is most often assumed to be local at the time of observation in the large-scale limit. This hypothesis is however unstable under time evolution, we provide proofs under several (increasingly more realistic) sets of assumptions. In the simplest toy model galaxies are created locally and linearly biased at a single formation time, and subsequently move with the dark matter (no velocity bias) conserving their comoving number density (no merging). We show that, after this formation time, the bias becomes unavoidably nonlocal and nonlinear at large scales. We identify the nonlocal gravitationally induced fields in which the galaxy overdensity can be expanded, showing that they can be constructed out of the invariants of the deformation tensor (Galileons), the main signature of which is a quadrupole field in second-order perturbation theory. In addition, we show that this result persists if we include an arbitrary evolution of the comoving number density of tracers. We then include velocity bias, and show that new contributions appear; these are related to the breaking of Galilean invariance of the bias relation, a dipole field being the signature at second order. We test these predictions by studying the dependence of halo overdensities in cells of fixed dark matter density: measurements in simulations show that departures from the mean bias relation are strongly correlated with the nonlocal gravitationally induced fields identified by our formalism, suggesting that the halo distribution at the present time is indeed more closely related to the mass distribution at an earlier rather than present time. However, the nonlocality seen in the simulations is not fully captured by assuming local bias in Lagrangian space. The effects on nonlocal bias seen in the simulations are most important for the most biased halos, as expected from our predictions. Accounting for these effects when modeling galaxy bias is essential for correctly describing the dependence on triangle shape of the galaxy bispectrum, and hence constraining cosmological parameters and primordial non-Gaussianity. We show that using our formalism we remove an important systematic in the determination of bias parameters from the galaxy bispectrum, particularly for luminous galaxies.

Original language | English (US) |
---|---|

Article number | 083509 |

Journal | Physical Review D - Particles, Fields, Gravitation and Cosmology |

Volume | 85 |

Issue number | 8 |

DOIs | |

State | Published - Apr 5 2012 |

### Fingerprint

### ASJC Scopus subject areas

- Nuclear and High Energy Physics

### Cite this

*Physical Review D - Particles, Fields, Gravitation and Cosmology*,

*85*(8), [083509]. https://doi.org/10.1103/PhysRevD.85.083509

**Gravity and large-scale nonlocal bias.** / Chan, Kwan Chuen; Scoccimarro, Román; Sheth, Ravi K.

Research output: Contribution to journal › Article

*Physical Review D - Particles, Fields, Gravitation and Cosmology*, vol. 85, no. 8, 083509. https://doi.org/10.1103/PhysRevD.85.083509

}

TY - JOUR

T1 - Gravity and large-scale nonlocal bias

AU - Chan, Kwan Chuen

AU - Scoccimarro, Román

AU - Sheth, Ravi K.

PY - 2012/4/5

Y1 - 2012/4/5

N2 - For Gaussian primordial fluctuations the relationship between galaxy and matter overdensities, bias, is most often assumed to be local at the time of observation in the large-scale limit. This hypothesis is however unstable under time evolution, we provide proofs under several (increasingly more realistic) sets of assumptions. In the simplest toy model galaxies are created locally and linearly biased at a single formation time, and subsequently move with the dark matter (no velocity bias) conserving their comoving number density (no merging). We show that, after this formation time, the bias becomes unavoidably nonlocal and nonlinear at large scales. We identify the nonlocal gravitationally induced fields in which the galaxy overdensity can be expanded, showing that they can be constructed out of the invariants of the deformation tensor (Galileons), the main signature of which is a quadrupole field in second-order perturbation theory. In addition, we show that this result persists if we include an arbitrary evolution of the comoving number density of tracers. We then include velocity bias, and show that new contributions appear; these are related to the breaking of Galilean invariance of the bias relation, a dipole field being the signature at second order. We test these predictions by studying the dependence of halo overdensities in cells of fixed dark matter density: measurements in simulations show that departures from the mean bias relation are strongly correlated with the nonlocal gravitationally induced fields identified by our formalism, suggesting that the halo distribution at the present time is indeed more closely related to the mass distribution at an earlier rather than present time. However, the nonlocality seen in the simulations is not fully captured by assuming local bias in Lagrangian space. The effects on nonlocal bias seen in the simulations are most important for the most biased halos, as expected from our predictions. Accounting for these effects when modeling galaxy bias is essential for correctly describing the dependence on triangle shape of the galaxy bispectrum, and hence constraining cosmological parameters and primordial non-Gaussianity. We show that using our formalism we remove an important systematic in the determination of bias parameters from the galaxy bispectrum, particularly for luminous galaxies.

AB - For Gaussian primordial fluctuations the relationship between galaxy and matter overdensities, bias, is most often assumed to be local at the time of observation in the large-scale limit. This hypothesis is however unstable under time evolution, we provide proofs under several (increasingly more realistic) sets of assumptions. In the simplest toy model galaxies are created locally and linearly biased at a single formation time, and subsequently move with the dark matter (no velocity bias) conserving their comoving number density (no merging). We show that, after this formation time, the bias becomes unavoidably nonlocal and nonlinear at large scales. We identify the nonlocal gravitationally induced fields in which the galaxy overdensity can be expanded, showing that they can be constructed out of the invariants of the deformation tensor (Galileons), the main signature of which is a quadrupole field in second-order perturbation theory. In addition, we show that this result persists if we include an arbitrary evolution of the comoving number density of tracers. We then include velocity bias, and show that new contributions appear; these are related to the breaking of Galilean invariance of the bias relation, a dipole field being the signature at second order. We test these predictions by studying the dependence of halo overdensities in cells of fixed dark matter density: measurements in simulations show that departures from the mean bias relation are strongly correlated with the nonlocal gravitationally induced fields identified by our formalism, suggesting that the halo distribution at the present time is indeed more closely related to the mass distribution at an earlier rather than present time. However, the nonlocality seen in the simulations is not fully captured by assuming local bias in Lagrangian space. The effects on nonlocal bias seen in the simulations are most important for the most biased halos, as expected from our predictions. Accounting for these effects when modeling galaxy bias is essential for correctly describing the dependence on triangle shape of the galaxy bispectrum, and hence constraining cosmological parameters and primordial non-Gaussianity. We show that using our formalism we remove an important systematic in the determination of bias parameters from the galaxy bispectrum, particularly for luminous galaxies.

UR - http://www.scopus.com/inward/record.url?scp=84860192424&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84860192424&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.85.083509

DO - 10.1103/PhysRevD.85.083509

M3 - Article

AN - SCOPUS:84860192424

VL - 85

JO - Physical review D: Particles and fields

JF - Physical review D: Particles and fields

SN - 1550-7998

IS - 8

M1 - 083509

ER -