FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

J. Bhattacharya, Shravan Hanasoge, H. M. Antia

    Research output: Contribution to journalArticle

    Abstract

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the "surface term." The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective "quiet-Sun" wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

    Original languageEnglish (US)
    Article number246
    JournalAstrophysical Journal
    Volume806
    Issue number2
    DOIs
    StatePublished - Jun 20 2015

    Fingerprint

    frequency shift
    sun
    convection
    oscillation
    scattering
    wave equation
    oscillations
    wave equations
    resonant frequencies
    three-dimensional flow
    solar oscillations
    stars
    three dimensional flow
    physics
    hydrodynamics
    homogenizing
    bears
    wavelength
    deviation
    modeling

    Keywords

    • convection
    • methods: analytical
    • Sun: helioseismology
    • waves

    ASJC Scopus subject areas

    • Astronomy and Astrophysics
    • Space and Planetary Science

    Cite this

    FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING. / Bhattacharya, J.; Hanasoge, Shravan; Antia, H. M.

    In: Astrophysical Journal, Vol. 806, No. 2, 246, 20.06.2015.

    Research output: Contribution to journalArticle

    Bhattacharya, J. ; Hanasoge, Shravan ; Antia, H. M. / FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING. In: Astrophysical Journal. 2015 ; Vol. 806, No. 2.
    @article{da7036c7fbed41f193f0d868d121589f,
    title = "FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING",
    abstract = "Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the {"}surface term.{"} The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective {"}quiet-Sun{"} wave equation with altered sound speed, Br{\"u}nt-V{\"a}is{\"a}la frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.",
    keywords = "convection, methods: analytical, Sun: helioseismology, waves",
    author = "J. Bhattacharya and Shravan Hanasoge and Antia, {H. M.}",
    year = "2015",
    month = "6",
    day = "20",
    doi = "10.1088/0004-637X/806/2/246",
    language = "English (US)",
    volume = "806",
    journal = "Astrophysical Journal",
    issn = "0004-637X",
    publisher = "IOP Publishing Ltd.",
    number = "2",

    }

    TY - JOUR

    T1 - FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    AU - Bhattacharya, J.

    AU - Hanasoge, Shravan

    AU - Antia, H. M.

    PY - 2015/6/20

    Y1 - 2015/6/20

    N2 - Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the "surface term." The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective "quiet-Sun" wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

    AB - Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the "surface term." The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective "quiet-Sun" wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

    KW - convection

    KW - methods: analytical

    KW - Sun: helioseismology

    KW - waves

    UR - http://www.scopus.com/inward/record.url?scp=84934976653&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84934976653&partnerID=8YFLogxK

    U2 - 10.1088/0004-637X/806/2/246

    DO - 10.1088/0004-637X/806/2/246

    M3 - Article

    VL - 806

    JO - Astrophysical Journal

    JF - Astrophysical Journal

    SN - 0004-637X

    IS - 2

    M1 - 246

    ER -