Filtering turbulent sparsely observed geophysical flows

John Harlim, Andrew J. Majda

Research output: Contribution to journalArticle

Abstract

Filtering sparsely turbulent signals from nature is a central problem of contemporary data assimilation. Here, sparsely observed turbulent signals from nature are generated by solutions of two-layer quasigeostrophic models with turbulent cascades from baroclinic instability in two separate regimes with varying Rossby radius mimicking the atmosphere and the ocean. In the "atmospheric" case, large-scale turbulent fluctuations are dominated by barotropic zonal jets with non-Gaussian statistics while the "oceanic" case has large-scale blocking regime transitions with barotropic zonal jets and large-scale Rossby waves. Recently introduced, cheap radical linear stochastic filtering algorithms utilizing mean stochastic models (MSM1, MSM2) that have judicious model errors are developed here as well as a very recent cheap stochastic parameterization extended Kalman filter (SPEKF), which includes stochastic parameterization of additive and multiplicative bias corrections "on the fly." These cheap stochastic reduced filters as well as a local least squares ensemble adjustment Kalman filter (LLS-EAKF) are compared on the test bed with 36 sparse regularly spaced observations for their skill in recovering turbulent spectra, spatial pattern correlations, and RMS errors. Of these four algorithms, the cheap SPEKF algorithm has the superior overall skill on the stringent test bed, comparable to LLS-EAKF in the atmospheric regime with and without model error and far superior to LLS-EAKF in the ocean regime. LLS-EAKF has special difficulty and high computational cost in the ocean regime with small Rossby radius, which creates stiffness in the perfect dynamics. The even cheaper mean stochastic model, MSM1, has high skill, which is comparable to SPEKF for the oceanic case while MSM2 has significantly worse filtering performance than MSM1 with the same inexpensive computational cost. This is interesting because MSM1 is based on a simple new regression strategy while MSM2 relies on the conventional regression strategy used in stochastic models for shear turbulence.

Original languageEnglish (US)
Pages (from-to)1050-1083
Number of pages34
JournalMonthly Weather Review
Volume138
Issue number4
DOIs
StatePublished - Apr 2010

Fingerprint

Kalman filter
parameterization
ocean
baroclinic instability
Rossby wave
cost
data assimilation
stiffness
turbulence
filter
atmosphere

Keywords

  • Filtering techniques
  • Kalman filter
  • Rossby waves
  • Turbulence

ASJC Scopus subject areas

  • Atmospheric Science

Cite this

Filtering turbulent sparsely observed geophysical flows. / Harlim, John; Majda, Andrew J.

In: Monthly Weather Review, Vol. 138, No. 4, 04.2010, p. 1050-1083.

Research output: Contribution to journalArticle

@article{17e86bd25a604342aa4123e11d906689,
title = "Filtering turbulent sparsely observed geophysical flows",
abstract = "Filtering sparsely turbulent signals from nature is a central problem of contemporary data assimilation. Here, sparsely observed turbulent signals from nature are generated by solutions of two-layer quasigeostrophic models with turbulent cascades from baroclinic instability in two separate regimes with varying Rossby radius mimicking the atmosphere and the ocean. In the {"}atmospheric{"} case, large-scale turbulent fluctuations are dominated by barotropic zonal jets with non-Gaussian statistics while the {"}oceanic{"} case has large-scale blocking regime transitions with barotropic zonal jets and large-scale Rossby waves. Recently introduced, cheap radical linear stochastic filtering algorithms utilizing mean stochastic models (MSM1, MSM2) that have judicious model errors are developed here as well as a very recent cheap stochastic parameterization extended Kalman filter (SPEKF), which includes stochastic parameterization of additive and multiplicative bias corrections {"}on the fly.{"} These cheap stochastic reduced filters as well as a local least squares ensemble adjustment Kalman filter (LLS-EAKF) are compared on the test bed with 36 sparse regularly spaced observations for their skill in recovering turbulent spectra, spatial pattern correlations, and RMS errors. Of these four algorithms, the cheap SPEKF algorithm has the superior overall skill on the stringent test bed, comparable to LLS-EAKF in the atmospheric regime with and without model error and far superior to LLS-EAKF in the ocean regime. LLS-EAKF has special difficulty and high computational cost in the ocean regime with small Rossby radius, which creates stiffness in the perfect dynamics. The even cheaper mean stochastic model, MSM1, has high skill, which is comparable to SPEKF for the oceanic case while MSM2 has significantly worse filtering performance than MSM1 with the same inexpensive computational cost. This is interesting because MSM1 is based on a simple new regression strategy while MSM2 relies on the conventional regression strategy used in stochastic models for shear turbulence.",
keywords = "Filtering techniques, Kalman filter, Rossby waves, Turbulence",
author = "John Harlim and Majda, {Andrew J.}",
year = "2010",
month = "4",
doi = "10.1175/2009MWR3113.1",
language = "English (US)",
volume = "138",
pages = "1050--1083",
journal = "Monthly Weather Review",
issn = "0027-0644",
publisher = "American Meteorological Society",
number = "4",

}

TY - JOUR

T1 - Filtering turbulent sparsely observed geophysical flows

AU - Harlim, John

AU - Majda, Andrew J.

PY - 2010/4

Y1 - 2010/4

N2 - Filtering sparsely turbulent signals from nature is a central problem of contemporary data assimilation. Here, sparsely observed turbulent signals from nature are generated by solutions of two-layer quasigeostrophic models with turbulent cascades from baroclinic instability in two separate regimes with varying Rossby radius mimicking the atmosphere and the ocean. In the "atmospheric" case, large-scale turbulent fluctuations are dominated by barotropic zonal jets with non-Gaussian statistics while the "oceanic" case has large-scale blocking regime transitions with barotropic zonal jets and large-scale Rossby waves. Recently introduced, cheap radical linear stochastic filtering algorithms utilizing mean stochastic models (MSM1, MSM2) that have judicious model errors are developed here as well as a very recent cheap stochastic parameterization extended Kalman filter (SPEKF), which includes stochastic parameterization of additive and multiplicative bias corrections "on the fly." These cheap stochastic reduced filters as well as a local least squares ensemble adjustment Kalman filter (LLS-EAKF) are compared on the test bed with 36 sparse regularly spaced observations for their skill in recovering turbulent spectra, spatial pattern correlations, and RMS errors. Of these four algorithms, the cheap SPEKF algorithm has the superior overall skill on the stringent test bed, comparable to LLS-EAKF in the atmospheric regime with and without model error and far superior to LLS-EAKF in the ocean regime. LLS-EAKF has special difficulty and high computational cost in the ocean regime with small Rossby radius, which creates stiffness in the perfect dynamics. The even cheaper mean stochastic model, MSM1, has high skill, which is comparable to SPEKF for the oceanic case while MSM2 has significantly worse filtering performance than MSM1 with the same inexpensive computational cost. This is interesting because MSM1 is based on a simple new regression strategy while MSM2 relies on the conventional regression strategy used in stochastic models for shear turbulence.

AB - Filtering sparsely turbulent signals from nature is a central problem of contemporary data assimilation. Here, sparsely observed turbulent signals from nature are generated by solutions of two-layer quasigeostrophic models with turbulent cascades from baroclinic instability in two separate regimes with varying Rossby radius mimicking the atmosphere and the ocean. In the "atmospheric" case, large-scale turbulent fluctuations are dominated by barotropic zonal jets with non-Gaussian statistics while the "oceanic" case has large-scale blocking regime transitions with barotropic zonal jets and large-scale Rossby waves. Recently introduced, cheap radical linear stochastic filtering algorithms utilizing mean stochastic models (MSM1, MSM2) that have judicious model errors are developed here as well as a very recent cheap stochastic parameterization extended Kalman filter (SPEKF), which includes stochastic parameterization of additive and multiplicative bias corrections "on the fly." These cheap stochastic reduced filters as well as a local least squares ensemble adjustment Kalman filter (LLS-EAKF) are compared on the test bed with 36 sparse regularly spaced observations for their skill in recovering turbulent spectra, spatial pattern correlations, and RMS errors. Of these four algorithms, the cheap SPEKF algorithm has the superior overall skill on the stringent test bed, comparable to LLS-EAKF in the atmospheric regime with and without model error and far superior to LLS-EAKF in the ocean regime. LLS-EAKF has special difficulty and high computational cost in the ocean regime with small Rossby radius, which creates stiffness in the perfect dynamics. The even cheaper mean stochastic model, MSM1, has high skill, which is comparable to SPEKF for the oceanic case while MSM2 has significantly worse filtering performance than MSM1 with the same inexpensive computational cost. This is interesting because MSM1 is based on a simple new regression strategy while MSM2 relies on the conventional regression strategy used in stochastic models for shear turbulence.

KW - Filtering techniques

KW - Kalman filter

KW - Rossby waves

KW - Turbulence

UR - http://www.scopus.com/inward/record.url?scp=77955547132&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77955547132&partnerID=8YFLogxK

U2 - 10.1175/2009MWR3113.1

DO - 10.1175/2009MWR3113.1

M3 - Article

VL - 138

SP - 1050

EP - 1083

JO - Monthly Weather Review

JF - Monthly Weather Review

SN - 0027-0644

IS - 4

ER -