Extremal uncrowded hypergraphs

M. Ajtai, J. Komlós, J. Pintz, J. Spencer, E. Szemerédi

Research output: Contribution to journalArticle

Abstract

Let G be a (k + 1)-graph (a hypergraph with each hyperedge of size k + 1) with n vertices and average degreee t. Assume k ≪ t ≪ n. If G is uncrowded (contains no cycle of size 2, 3, or 4) then there exists and independent set of size ck( n t)(ln t) 1 k.

Original languageEnglish (US)
Pages (from-to)321-335
Number of pages15
JournalJournal of Combinatorial Theory, Series A
Volume32
Issue number3
DOIs
StatePublished - 1982

Fingerprint

Hypergraph
Independent Set
Cycle
Graph in graph theory

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

Extremal uncrowded hypergraphs. / Ajtai, M.; Komlós, J.; Pintz, J.; Spencer, J.; Szemerédi, E.

In: Journal of Combinatorial Theory, Series A, Vol. 32, No. 3, 1982, p. 321-335.

Research output: Contribution to journalArticle

Ajtai, M, Komlós, J, Pintz, J, Spencer, J & Szemerédi, E 1982, 'Extremal uncrowded hypergraphs', Journal of Combinatorial Theory, Series A, vol. 32, no. 3, pp. 321-335. https://doi.org/10.1016/0097-3165(82)90049-8
Ajtai, M. ; Komlós, J. ; Pintz, J. ; Spencer, J. ; Szemerédi, E. / Extremal uncrowded hypergraphs. In: Journal of Combinatorial Theory, Series A. 1982 ; Vol. 32, No. 3. pp. 321-335.
@article{47a42d5a60be4fa78dc1114c17c3cc04,
title = "Extremal uncrowded hypergraphs",
abstract = "Let G be a (k + 1)-graph (a hypergraph with each hyperedge of size k + 1) with n vertices and average degreee t. Assume k ≪ t ≪ n. If G is uncrowded (contains no cycle of size 2, 3, or 4) then there exists and independent set of size ck( n t)(ln t) 1 k.",
author = "M. Ajtai and J. Koml{\'o}s and J. Pintz and J. Spencer and E. Szemer{\'e}di",
year = "1982",
doi = "10.1016/0097-3165(82)90049-8",
language = "English (US)",
volume = "32",
pages = "321--335",
journal = "Journal of Combinatorial Theory - Series A",
issn = "0097-3165",
publisher = "Academic Press Inc.",
number = "3",

}

TY - JOUR

T1 - Extremal uncrowded hypergraphs

AU - Ajtai, M.

AU - Komlós, J.

AU - Pintz, J.

AU - Spencer, J.

AU - Szemerédi, E.

PY - 1982

Y1 - 1982

N2 - Let G be a (k + 1)-graph (a hypergraph with each hyperedge of size k + 1) with n vertices and average degreee t. Assume k ≪ t ≪ n. If G is uncrowded (contains no cycle of size 2, 3, or 4) then there exists and independent set of size ck( n t)(ln t) 1 k.

AB - Let G be a (k + 1)-graph (a hypergraph with each hyperedge of size k + 1) with n vertices and average degreee t. Assume k ≪ t ≪ n. If G is uncrowded (contains no cycle of size 2, 3, or 4) then there exists and independent set of size ck( n t)(ln t) 1 k.

UR - http://www.scopus.com/inward/record.url?scp=0000916941&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000916941&partnerID=8YFLogxK

U2 - 10.1016/0097-3165(82)90049-8

DO - 10.1016/0097-3165(82)90049-8

M3 - Article

VL - 32

SP - 321

EP - 335

JO - Journal of Combinatorial Theory - Series A

JF - Journal of Combinatorial Theory - Series A

SN - 0097-3165

IS - 3

ER -