Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics

Eric Barth, Tamar Schlick

Research output: Contribution to journalArticle

Abstract

Force splitting or multiple timestep (MTS) methods are effective techniques that accelerate biomolecular dynamics simulations by updating the fast and slow forces at different frequencies. Since simple extrapolation formulas for incorporating the slow forces into the discretization produced notable energy drifts, symplectic MTS variants based on periodic impulses became more popular. However, the efficiency gain possible with these impulse approaches is limited by a timestep barrier due to resonance - a numerical artifact occurring when the timestep is related to the period of the fastest motion present in the dynamics. This limitation is lifted substantially for MTS methods based on extrapolation in combination with stochastic dynamics, as demonstrated for the LN method in the companion paper for protein dynamics. To explain our observations on those complex nonlinear systems, we examine here the stability of extrapolation and impulses to force-splitting in Newtonian and Langevin dynamics. We analyze for a simple linear test system the energy drift of the former and the resonance-related artifacts of the latter technique. We show that two-class impulse methods are generally stable except at integer multiples of half the period of the fastest motion, with the severity of the instability worse at larger timesteps. Extrapolation methods are generally unstable for the Newtonian model problem, but the instability is bounded for increasing timesteps. This boundedness ensures good long-timestep behavior of extrapolation methods for Langevin dynamics with moderate values of the collision parameter. We thus advocate extrapolation methods for efficient integration of the stochastic Langevin equations of motion, as in the LN method described in paper I.

Original languageEnglish (US)
Pages (from-to)1633-1642
Number of pages10
JournalJournal of Chemical Physics
Volume109
Issue number5
DOIs
StatePublished - 1998

Fingerprint

Extrapolation
impulses
extrapolation
artifacts
collision parameters
Convergence of numerical methods
nonlinear systems
Equations of motion
integers
Nonlinear systems
equations of motion
proteins
energy
Computer simulation
Proteins
simulation

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

@article{3ff53eb125594520b53e1198e32ede70,
title = "Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics",
abstract = "Force splitting or multiple timestep (MTS) methods are effective techniques that accelerate biomolecular dynamics simulations by updating the fast and slow forces at different frequencies. Since simple extrapolation formulas for incorporating the slow forces into the discretization produced notable energy drifts, symplectic MTS variants based on periodic impulses became more popular. However, the efficiency gain possible with these impulse approaches is limited by a timestep barrier due to resonance - a numerical artifact occurring when the timestep is related to the period of the fastest motion present in the dynamics. This limitation is lifted substantially for MTS methods based on extrapolation in combination with stochastic dynamics, as demonstrated for the LN method in the companion paper for protein dynamics. To explain our observations on those complex nonlinear systems, we examine here the stability of extrapolation and impulses to force-splitting in Newtonian and Langevin dynamics. We analyze for a simple linear test system the energy drift of the former and the resonance-related artifacts of the latter technique. We show that two-class impulse methods are generally stable except at integer multiples of half the period of the fastest motion, with the severity of the instability worse at larger timesteps. Extrapolation methods are generally unstable for the Newtonian model problem, but the instability is bounded for increasing timesteps. This boundedness ensures good long-timestep behavior of extrapolation methods for Langevin dynamics with moderate values of the collision parameter. We thus advocate extrapolation methods for efficient integration of the stochastic Langevin equations of motion, as in the LN method described in paper I.",
author = "Eric Barth and Tamar Schlick",
year = "1998",
doi = "10.1063/1.476737",
language = "English (US)",
volume = "109",
pages = "1633--1642",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "5",

}

TY - JOUR

T1 - Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics

AU - Barth, Eric

AU - Schlick, Tamar

PY - 1998

Y1 - 1998

N2 - Force splitting or multiple timestep (MTS) methods are effective techniques that accelerate biomolecular dynamics simulations by updating the fast and slow forces at different frequencies. Since simple extrapolation formulas for incorporating the slow forces into the discretization produced notable energy drifts, symplectic MTS variants based on periodic impulses became more popular. However, the efficiency gain possible with these impulse approaches is limited by a timestep barrier due to resonance - a numerical artifact occurring when the timestep is related to the period of the fastest motion present in the dynamics. This limitation is lifted substantially for MTS methods based on extrapolation in combination with stochastic dynamics, as demonstrated for the LN method in the companion paper for protein dynamics. To explain our observations on those complex nonlinear systems, we examine here the stability of extrapolation and impulses to force-splitting in Newtonian and Langevin dynamics. We analyze for a simple linear test system the energy drift of the former and the resonance-related artifacts of the latter technique. We show that two-class impulse methods are generally stable except at integer multiples of half the period of the fastest motion, with the severity of the instability worse at larger timesteps. Extrapolation methods are generally unstable for the Newtonian model problem, but the instability is bounded for increasing timesteps. This boundedness ensures good long-timestep behavior of extrapolation methods for Langevin dynamics with moderate values of the collision parameter. We thus advocate extrapolation methods for efficient integration of the stochastic Langevin equations of motion, as in the LN method described in paper I.

AB - Force splitting or multiple timestep (MTS) methods are effective techniques that accelerate biomolecular dynamics simulations by updating the fast and slow forces at different frequencies. Since simple extrapolation formulas for incorporating the slow forces into the discretization produced notable energy drifts, symplectic MTS variants based on periodic impulses became more popular. However, the efficiency gain possible with these impulse approaches is limited by a timestep barrier due to resonance - a numerical artifact occurring when the timestep is related to the period of the fastest motion present in the dynamics. This limitation is lifted substantially for MTS methods based on extrapolation in combination with stochastic dynamics, as demonstrated for the LN method in the companion paper for protein dynamics. To explain our observations on those complex nonlinear systems, we examine here the stability of extrapolation and impulses to force-splitting in Newtonian and Langevin dynamics. We analyze for a simple linear test system the energy drift of the former and the resonance-related artifacts of the latter technique. We show that two-class impulse methods are generally stable except at integer multiples of half the period of the fastest motion, with the severity of the instability worse at larger timesteps. Extrapolation methods are generally unstable for the Newtonian model problem, but the instability is bounded for increasing timesteps. This boundedness ensures good long-timestep behavior of extrapolation methods for Langevin dynamics with moderate values of the collision parameter. We thus advocate extrapolation methods for efficient integration of the stochastic Langevin equations of motion, as in the LN method described in paper I.

UR - http://www.scopus.com/inward/record.url?scp=0008985494&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0008985494&partnerID=8YFLogxK

U2 - 10.1063/1.476737

DO - 10.1063/1.476737

M3 - Article

AN - SCOPUS:0008985494

VL - 109

SP - 1633

EP - 1642

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 5

ER -