Estimation of Heterogeneous Individual Treatment Effects With Endogenous Treatments

Qian Feng, Quang Vuong, Haiqing Xu

    Research output: Contribution to journalArticle

    Abstract

    This article estimates individual treatment effects (ITE) and its probability distribution in a triangular model with binary-valued endogenous treatments. Our estimation procedure takes two steps. First, we estimate the counterfactual outcome and hence, the ITE for every observational unit in the sample. Second, we estimate the ITE density function of the whole population. Our estimation method does not suffer from the ill-posed inverse problem associated with inverting a nonlinear functional. Asymptotic properties of the proposed method are established. We study its finite sample properties in Monte Carlo experiments. We also illustrate our approach with an empirical application assessing the effects of 401(k) retirement programs on personal savings. Our results show that there exists a small but statistically significant proportion of individuals who experience negative effects, although the majority of ITEs is positive. Supplementary materials for this article are available online.

    Original languageEnglish (US)
    JournalJournal of the American Statistical Association
    DOIs
    StatePublished - Jan 1 2019

    Fingerprint

    Treatment Effects
    Estimate
    Monte Carlo Experiment
    Ill-posed Problem
    Density Function
    Asymptotic Properties
    Triangular
    Inverse Problem
    Proportion
    Probability Distribution
    Binary
    Unit
    Treatment effects
    Model

    Keywords

    • 401(k) retirement programs
    • Binary endogenous variable
    • Counterfactual mapping
    • Individual treatment effects
    • Nonseparable triangular models

    ASJC Scopus subject areas

    • Statistics and Probability
    • Statistics, Probability and Uncertainty

    Cite this

    Estimation of Heterogeneous Individual Treatment Effects With Endogenous Treatments. / Feng, Qian; Vuong, Quang; Xu, Haiqing.

    In: Journal of the American Statistical Association, 01.01.2019.

    Research output: Contribution to journalArticle

    @article{e6d4da3833014627ae23ee12a14fcded,
    title = "Estimation of Heterogeneous Individual Treatment Effects With Endogenous Treatments",
    abstract = "This article estimates individual treatment effects (ITE) and its probability distribution in a triangular model with binary-valued endogenous treatments. Our estimation procedure takes two steps. First, we estimate the counterfactual outcome and hence, the ITE for every observational unit in the sample. Second, we estimate the ITE density function of the whole population. Our estimation method does not suffer from the ill-posed inverse problem associated with inverting a nonlinear functional. Asymptotic properties of the proposed method are established. We study its finite sample properties in Monte Carlo experiments. We also illustrate our approach with an empirical application assessing the effects of 401(k) retirement programs on personal savings. Our results show that there exists a small but statistically significant proportion of individuals who experience negative effects, although the majority of ITEs is positive. Supplementary materials for this article are available online.",
    keywords = "401(k) retirement programs, Binary endogenous variable, Counterfactual mapping, Individual treatment effects, Nonseparable triangular models",
    author = "Qian Feng and Quang Vuong and Haiqing Xu",
    year = "2019",
    month = "1",
    day = "1",
    doi = "10.1080/01621459.2018.1543121",
    language = "English (US)",
    journal = "Journal of the American Statistical Association",
    issn = "0162-1459",
    publisher = "Taylor and Francis Ltd.",

    }

    TY - JOUR

    T1 - Estimation of Heterogeneous Individual Treatment Effects With Endogenous Treatments

    AU - Feng, Qian

    AU - Vuong, Quang

    AU - Xu, Haiqing

    PY - 2019/1/1

    Y1 - 2019/1/1

    N2 - This article estimates individual treatment effects (ITE) and its probability distribution in a triangular model with binary-valued endogenous treatments. Our estimation procedure takes two steps. First, we estimate the counterfactual outcome and hence, the ITE for every observational unit in the sample. Second, we estimate the ITE density function of the whole population. Our estimation method does not suffer from the ill-posed inverse problem associated with inverting a nonlinear functional. Asymptotic properties of the proposed method are established. We study its finite sample properties in Monte Carlo experiments. We also illustrate our approach with an empirical application assessing the effects of 401(k) retirement programs on personal savings. Our results show that there exists a small but statistically significant proportion of individuals who experience negative effects, although the majority of ITEs is positive. Supplementary materials for this article are available online.

    AB - This article estimates individual treatment effects (ITE) and its probability distribution in a triangular model with binary-valued endogenous treatments. Our estimation procedure takes two steps. First, we estimate the counterfactual outcome and hence, the ITE for every observational unit in the sample. Second, we estimate the ITE density function of the whole population. Our estimation method does not suffer from the ill-posed inverse problem associated with inverting a nonlinear functional. Asymptotic properties of the proposed method are established. We study its finite sample properties in Monte Carlo experiments. We also illustrate our approach with an empirical application assessing the effects of 401(k) retirement programs on personal savings. Our results show that there exists a small but statistically significant proportion of individuals who experience negative effects, although the majority of ITEs is positive. Supplementary materials for this article are available online.

    KW - 401(k) retirement programs

    KW - Binary endogenous variable

    KW - Counterfactual mapping

    KW - Individual treatment effects

    KW - Nonseparable triangular models

    UR - http://www.scopus.com/inward/record.url?scp=85064498906&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=85064498906&partnerID=8YFLogxK

    U2 - 10.1080/01621459.2018.1543121

    DO - 10.1080/01621459.2018.1543121

    M3 - Article

    AN - SCOPUS:85064498906

    JO - Journal of the American Statistical Association

    JF - Journal of the American Statistical Association

    SN - 0162-1459

    ER -