Estimates of eigenvalues and eigenfunctions in periodic homogenization

Carlos E. Kenig, Fang-Hua Lin, Zhongwei Shen

Research output: Contribution to journalArticle

Abstract

For a family of elliptic operators with rapidly oscillating periodic coefficients, we study the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet eigenfunctions. The results rely on an O(ε) estimate in H1 for solutions with Dirichlet condition.

Original languageEnglish (US)
Pages (from-to)1901-1925
Number of pages25
JournalJournal of the European Mathematical Society
Volume15
Issue number5
DOIs
StatePublished - 2013

Fingerprint

Periodic Homogenization
Dirichlet Eigenvalues
Oscillating Coefficients
Dirichlet conditions
Eigenvalues and Eigenfunctions
Periodic Coefficients
Elliptic Operator
Eigenvalues and eigenfunctions
Dirichlet
Eigenfunctions
Convergence Rate
Derivatives
Derivative
Estimate
Family

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Estimates of eigenvalues and eigenfunctions in periodic homogenization. / Kenig, Carlos E.; Lin, Fang-Hua; Shen, Zhongwei.

In: Journal of the European Mathematical Society, Vol. 15, No. 5, 2013, p. 1901-1925.

Research output: Contribution to journalArticle

@article{4de97505745846ed998e9d4ad11ebc01,
title = "Estimates of eigenvalues and eigenfunctions in periodic homogenization",
abstract = "For a family of elliptic operators with rapidly oscillating periodic coefficients, we study the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet eigenfunctions. The results rely on an O(ε) estimate in H1 for solutions with Dirichlet condition.",
author = "Kenig, {Carlos E.} and Fang-Hua Lin and Zhongwei Shen",
year = "2013",
doi = "10.4171/JEMS/408",
language = "English (US)",
volume = "15",
pages = "1901--1925",
journal = "Journal of the European Mathematical Society",
issn = "1435-9855",
publisher = "European Mathematical Society Publishing House",
number = "5",

}

TY - JOUR

T1 - Estimates of eigenvalues and eigenfunctions in periodic homogenization

AU - Kenig, Carlos E.

AU - Lin, Fang-Hua

AU - Shen, Zhongwei

PY - 2013

Y1 - 2013

N2 - For a family of elliptic operators with rapidly oscillating periodic coefficients, we study the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet eigenfunctions. The results rely on an O(ε) estimate in H1 for solutions with Dirichlet condition.

AB - For a family of elliptic operators with rapidly oscillating periodic coefficients, we study the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet eigenfunctions. The results rely on an O(ε) estimate in H1 for solutions with Dirichlet condition.

UR - http://www.scopus.com/inward/record.url?scp=84880893431&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84880893431&partnerID=8YFLogxK

U2 - 10.4171/JEMS/408

DO - 10.4171/JEMS/408

M3 - Article

VL - 15

SP - 1901

EP - 1925

JO - Journal of the European Mathematical Society

JF - Journal of the European Mathematical Society

SN - 1435-9855

IS - 5

ER -