Entropy budget of an atmosphere in radiative-convective equilibrium. Part II

Latent heat transport and moist processes

Olivier Pauluis, Isaac M. Held

Research output: Contribution to journalArticle

Abstract

In moist convection, atmospheric motions transport water vapor from the earth's surface to the regions where condensation occurs. This transport is associated with three other aspects of convection: the latent heat transport, the expansion work performed by water vapor, and the irreversible entropy production due to diffusion of water vapor and phase changes. An analysis of the thermodynamic transformations of atmospheric water yields what is referred to as the entropy budget of the water substance, providing a quantitative relationship between these three aspects of moist convection. The water vapor transport can be viewed as an imperfect heat engine that produces less mechanical work than the corresponding Carnot cycle because of diffusion of water vapor and irreversible phase changes. The entropy budget of the water substance provides an alternative method of determining the irreversible entropy production due to phase changes and diffusion of water vapor. This method has the advantage that it does not require explicit knowledge of the relative humidity or of the molecular flux of water vapor for the estimation of the entropy production. Scaling arguments show that the expansion work of water vapor accounts for a small fraction of the work that would be produced in the absence of irreversible moist processes. It is also shown that diffusion of water vapor and irreversible phase changes can be interpreted as the irreversible counterpart to the continuous dehumidification resulting from condensation and precipitation. This leads to a description of moist convection where it acts more as an atmospheric dehumidifier than as a heat engine.

Original languageEnglish (US)
Pages (from-to)140-149
Number of pages10
JournalJournal of the Atmospheric Sciences
Volume59
Issue number2
StatePublished - 2002

Fingerprint

entropy
water vapor
atmosphere
convection
condensation
engine
atmospheric motion
budget
water yield
relative humidity
thermodynamics

ASJC Scopus subject areas

  • Atmospheric Science

Cite this

@article{9107cfd2d47942f9800fbda36c11ab9c,
title = "Entropy budget of an atmosphere in radiative-convective equilibrium. Part II: Latent heat transport and moist processes",
abstract = "In moist convection, atmospheric motions transport water vapor from the earth's surface to the regions where condensation occurs. This transport is associated with three other aspects of convection: the latent heat transport, the expansion work performed by water vapor, and the irreversible entropy production due to diffusion of water vapor and phase changes. An analysis of the thermodynamic transformations of atmospheric water yields what is referred to as the entropy budget of the water substance, providing a quantitative relationship between these three aspects of moist convection. The water vapor transport can be viewed as an imperfect heat engine that produces less mechanical work than the corresponding Carnot cycle because of diffusion of water vapor and irreversible phase changes. The entropy budget of the water substance provides an alternative method of determining the irreversible entropy production due to phase changes and diffusion of water vapor. This method has the advantage that it does not require explicit knowledge of the relative humidity or of the molecular flux of water vapor for the estimation of the entropy production. Scaling arguments show that the expansion work of water vapor accounts for a small fraction of the work that would be produced in the absence of irreversible moist processes. It is also shown that diffusion of water vapor and irreversible phase changes can be interpreted as the irreversible counterpart to the continuous dehumidification resulting from condensation and precipitation. This leads to a description of moist convection where it acts more as an atmospheric dehumidifier than as a heat engine.",
author = "Olivier Pauluis and Held, {Isaac M.}",
year = "2002",
language = "English (US)",
volume = "59",
pages = "140--149",
journal = "Journals of the Atmospheric Sciences",
issn = "0022-4928",
publisher = "American Meteorological Society",
number = "2",

}

TY - JOUR

T1 - Entropy budget of an atmosphere in radiative-convective equilibrium. Part II

T2 - Latent heat transport and moist processes

AU - Pauluis, Olivier

AU - Held, Isaac M.

PY - 2002

Y1 - 2002

N2 - In moist convection, atmospheric motions transport water vapor from the earth's surface to the regions where condensation occurs. This transport is associated with three other aspects of convection: the latent heat transport, the expansion work performed by water vapor, and the irreversible entropy production due to diffusion of water vapor and phase changes. An analysis of the thermodynamic transformations of atmospheric water yields what is referred to as the entropy budget of the water substance, providing a quantitative relationship between these three aspects of moist convection. The water vapor transport can be viewed as an imperfect heat engine that produces less mechanical work than the corresponding Carnot cycle because of diffusion of water vapor and irreversible phase changes. The entropy budget of the water substance provides an alternative method of determining the irreversible entropy production due to phase changes and diffusion of water vapor. This method has the advantage that it does not require explicit knowledge of the relative humidity or of the molecular flux of water vapor for the estimation of the entropy production. Scaling arguments show that the expansion work of water vapor accounts for a small fraction of the work that would be produced in the absence of irreversible moist processes. It is also shown that diffusion of water vapor and irreversible phase changes can be interpreted as the irreversible counterpart to the continuous dehumidification resulting from condensation and precipitation. This leads to a description of moist convection where it acts more as an atmospheric dehumidifier than as a heat engine.

AB - In moist convection, atmospheric motions transport water vapor from the earth's surface to the regions where condensation occurs. This transport is associated with three other aspects of convection: the latent heat transport, the expansion work performed by water vapor, and the irreversible entropy production due to diffusion of water vapor and phase changes. An analysis of the thermodynamic transformations of atmospheric water yields what is referred to as the entropy budget of the water substance, providing a quantitative relationship between these three aspects of moist convection. The water vapor transport can be viewed as an imperfect heat engine that produces less mechanical work than the corresponding Carnot cycle because of diffusion of water vapor and irreversible phase changes. The entropy budget of the water substance provides an alternative method of determining the irreversible entropy production due to phase changes and diffusion of water vapor. This method has the advantage that it does not require explicit knowledge of the relative humidity or of the molecular flux of water vapor for the estimation of the entropy production. Scaling arguments show that the expansion work of water vapor accounts for a small fraction of the work that would be produced in the absence of irreversible moist processes. It is also shown that diffusion of water vapor and irreversible phase changes can be interpreted as the irreversible counterpart to the continuous dehumidification resulting from condensation and precipitation. This leads to a description of moist convection where it acts more as an atmospheric dehumidifier than as a heat engine.

UR - http://www.scopus.com/inward/record.url?scp=0036322275&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036322275&partnerID=8YFLogxK

M3 - Article

VL - 59

SP - 140

EP - 149

JO - Journals of the Atmospheric Sciences

JF - Journals of the Atmospheric Sciences

SN - 0022-4928

IS - 2

ER -