Enhanced osteoblast response to a polymethylmethacrylate-hydroxyapatite composite

Amr Moursi, Alissa V. Winnard, Phillip L. Winnard, John J. Lannutti, Robert R. Seghi

Research output: Contribution to journalArticle

Abstract

Hydroxyapatite (HA)-reinforced polymers have been proposed as a method of improving the biological properties of bone cements and implant materials. For example, bone cements based on polymethylmethacrylate (PMMA) have long been used to secure orthopedic implants to the skeleton. This composite could also be used as a polished coating on other materials or in bulk form, shaped or molded, to custom fit a specific clinical need. However, complications may occur as a result of the limited mechanical and biological properties of PMMA. The purpose of this investigation was to determine whether the incorporation of HA in a PMMA matrix would enhance the biological properties of osteoblast response as compared to PMMA alone. Fetal rat calvarial osteoblasts were plated on discs of PMMA, PMMA/HA, commercially pure titanium (CpTi) and tissue culture polystyrene (control). Osteoblast attachment and day 2 proliferation were similar on all implant materials, whereas, day 8 proliferation on PMMA/HA was significantly higher than on PMMA and similar to CpTi and control. Extracellular matrix production was examined by immunohistochemistry which indicated that osteoblasts cultured on PMMA/HA showed a more distinct networked pattern of organized fibronectin. Histochemical staining of mineralization was examined by confocal microscopy which demonstrated a higher degree of mineralization in nodules formed on PMMA/HA as compared to PMMA. Together, these results indicate that the addition of HA in a PMMA matrix improves osteoblast response as compared to PMMA alone. Therefore, the incorporation of HA into a PMMA matrix may be a useful method to provide PMMA materials with enhanced osteogenic properties.

Original languageEnglish (US)
Pages (from-to)133-144
Number of pages12
JournalBiomaterials
Volume23
Issue number1
DOIs
StatePublished - Jan 1 2002

Fingerprint

Osteoblasts
Polymethyl Methacrylate
Durapatite
Hydroxyapatite
Composite materials
Bone cement
Titanium
Bone Cements
Tissue culture
Confocal microscopy
Orthopedics
Rats
Polystyrenes
Coatings
Polymers
Fibronectins
Skeleton
Confocal Microscopy
Extracellular Matrix

Keywords

  • Bone cement
  • Hydroxyapatite
  • Osteoblasts
  • Osteogenesis
  • Polymethylmethacrylate

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering

Cite this

Enhanced osteoblast response to a polymethylmethacrylate-hydroxyapatite composite. / Moursi, Amr; Winnard, Alissa V.; Winnard, Phillip L.; Lannutti, John J.; Seghi, Robert R.

In: Biomaterials, Vol. 23, No. 1, 01.01.2002, p. 133-144.

Research output: Contribution to journalArticle

Moursi, Amr ; Winnard, Alissa V. ; Winnard, Phillip L. ; Lannutti, John J. ; Seghi, Robert R. / Enhanced osteoblast response to a polymethylmethacrylate-hydroxyapatite composite. In: Biomaterials. 2002 ; Vol. 23, No. 1. pp. 133-144.
@article{d7ba89653321498cbd9093bb04084f5f,
title = "Enhanced osteoblast response to a polymethylmethacrylate-hydroxyapatite composite",
abstract = "Hydroxyapatite (HA)-reinforced polymers have been proposed as a method of improving the biological properties of bone cements and implant materials. For example, bone cements based on polymethylmethacrylate (PMMA) have long been used to secure orthopedic implants to the skeleton. This composite could also be used as a polished coating on other materials or in bulk form, shaped or molded, to custom fit a specific clinical need. However, complications may occur as a result of the limited mechanical and biological properties of PMMA. The purpose of this investigation was to determine whether the incorporation of HA in a PMMA matrix would enhance the biological properties of osteoblast response as compared to PMMA alone. Fetal rat calvarial osteoblasts were plated on discs of PMMA, PMMA/HA, commercially pure titanium (CpTi) and tissue culture polystyrene (control). Osteoblast attachment and day 2 proliferation were similar on all implant materials, whereas, day 8 proliferation on PMMA/HA was significantly higher than on PMMA and similar to CpTi and control. Extracellular matrix production was examined by immunohistochemistry which indicated that osteoblasts cultured on PMMA/HA showed a more distinct networked pattern of organized fibronectin. Histochemical staining of mineralization was examined by confocal microscopy which demonstrated a higher degree of mineralization in nodules formed on PMMA/HA as compared to PMMA. Together, these results indicate that the addition of HA in a PMMA matrix improves osteoblast response as compared to PMMA alone. Therefore, the incorporation of HA into a PMMA matrix may be a useful method to provide PMMA materials with enhanced osteogenic properties.",
keywords = "Bone cement, Hydroxyapatite, Osteoblasts, Osteogenesis, Polymethylmethacrylate",
author = "Amr Moursi and Winnard, {Alissa V.} and Winnard, {Phillip L.} and Lannutti, {John J.} and Seghi, {Robert R.}",
year = "2002",
month = "1",
day = "1",
doi = "10.1016/S0142-9612(01)00088-6",
language = "English (US)",
volume = "23",
pages = "133--144",
journal = "Biomaterials",
issn = "0142-9612",
publisher = "Elsevier BV",
number = "1",

}

TY - JOUR

T1 - Enhanced osteoblast response to a polymethylmethacrylate-hydroxyapatite composite

AU - Moursi, Amr

AU - Winnard, Alissa V.

AU - Winnard, Phillip L.

AU - Lannutti, John J.

AU - Seghi, Robert R.

PY - 2002/1/1

Y1 - 2002/1/1

N2 - Hydroxyapatite (HA)-reinforced polymers have been proposed as a method of improving the biological properties of bone cements and implant materials. For example, bone cements based on polymethylmethacrylate (PMMA) have long been used to secure orthopedic implants to the skeleton. This composite could also be used as a polished coating on other materials or in bulk form, shaped or molded, to custom fit a specific clinical need. However, complications may occur as a result of the limited mechanical and biological properties of PMMA. The purpose of this investigation was to determine whether the incorporation of HA in a PMMA matrix would enhance the biological properties of osteoblast response as compared to PMMA alone. Fetal rat calvarial osteoblasts were plated on discs of PMMA, PMMA/HA, commercially pure titanium (CpTi) and tissue culture polystyrene (control). Osteoblast attachment and day 2 proliferation were similar on all implant materials, whereas, day 8 proliferation on PMMA/HA was significantly higher than on PMMA and similar to CpTi and control. Extracellular matrix production was examined by immunohistochemistry which indicated that osteoblasts cultured on PMMA/HA showed a more distinct networked pattern of organized fibronectin. Histochemical staining of mineralization was examined by confocal microscopy which demonstrated a higher degree of mineralization in nodules formed on PMMA/HA as compared to PMMA. Together, these results indicate that the addition of HA in a PMMA matrix improves osteoblast response as compared to PMMA alone. Therefore, the incorporation of HA into a PMMA matrix may be a useful method to provide PMMA materials with enhanced osteogenic properties.

AB - Hydroxyapatite (HA)-reinforced polymers have been proposed as a method of improving the biological properties of bone cements and implant materials. For example, bone cements based on polymethylmethacrylate (PMMA) have long been used to secure orthopedic implants to the skeleton. This composite could also be used as a polished coating on other materials or in bulk form, shaped or molded, to custom fit a specific clinical need. However, complications may occur as a result of the limited mechanical and biological properties of PMMA. The purpose of this investigation was to determine whether the incorporation of HA in a PMMA matrix would enhance the biological properties of osteoblast response as compared to PMMA alone. Fetal rat calvarial osteoblasts were plated on discs of PMMA, PMMA/HA, commercially pure titanium (CpTi) and tissue culture polystyrene (control). Osteoblast attachment and day 2 proliferation were similar on all implant materials, whereas, day 8 proliferation on PMMA/HA was significantly higher than on PMMA and similar to CpTi and control. Extracellular matrix production was examined by immunohistochemistry which indicated that osteoblasts cultured on PMMA/HA showed a more distinct networked pattern of organized fibronectin. Histochemical staining of mineralization was examined by confocal microscopy which demonstrated a higher degree of mineralization in nodules formed on PMMA/HA as compared to PMMA. Together, these results indicate that the addition of HA in a PMMA matrix improves osteoblast response as compared to PMMA alone. Therefore, the incorporation of HA into a PMMA matrix may be a useful method to provide PMMA materials with enhanced osteogenic properties.

KW - Bone cement

KW - Hydroxyapatite

KW - Osteoblasts

KW - Osteogenesis

KW - Polymethylmethacrylate

UR - http://www.scopus.com/inward/record.url?scp=0036129798&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036129798&partnerID=8YFLogxK

U2 - 10.1016/S0142-9612(01)00088-6

DO - 10.1016/S0142-9612(01)00088-6

M3 - Article

VL - 23

SP - 133

EP - 144

JO - Biomaterials

JF - Biomaterials

SN - 0142-9612

IS - 1

ER -