Engineering of a peptide probe for β-amyloid aggregates

Edwin Aoraha, Jason Candreva, Jin Kim

Research output: Contribution to journalArticle

Abstract

Aggregation of β-amyloid (Aβ) is central to the pathogenesis of Alzheimer's disease (AD). Aβ aggregation produces amyloid assemblies, such as oligomers and fibrils. In contrast to non-toxic Aβ monomers, Aβ oligomers and fibrils can act directly as major toxic agents and indirectly as pools of the toxic entities, respectively. Thus, the detection of Aβ aggregates is of diagnostic interest and should benefit enhanced molecular understanding of AD. Among many molecular platforms, peptide-based ligands hold promise as Aβ probes due to their relative simplicity, ease of optimization and facile conjugation to other molecular contexts. In this regard, Aβ hydrophobic segments (critical in Aβ self-assembly) or variants thereof can serve as lead molecules for Aβ probe development. Unfortunately, the resulting peptides are either highly self-aggregation-prone or their probe potential has not been thoroughly examined. In the present study, we characterized a novel peptide ligand, KLVFWAK, which was created by simple point mutations of an Aβ hydrophobic segment (16KLVFFAE22). We found that KLVFWAK displayed low self-aggregation propensity and was preferentially bound to Aβ oligomers and fibrils relative to Aβ monomers. Interestingly, binding of KLVFWAK to Aβ aggregates occurred at a non-homologous Aβ segment (e.g., Aβ C-terminal domain) rather than the homologous 16KLVFFAE22. We also show that detection of Aβ aggregates during incubation of fresh Aβ was possible with KLVFWAK, further supporting KLVFWAK's high probe potential for Aβ aggregates. In short, this study presents creation of a non-self-aggregating peptide ligand for Aβ aggregates through simple point mutation of an Aβ-derived segment.

Original languageEnglish (US)
Pages (from-to)2281-2289
Number of pages9
JournalMolecular BioSystems
Volume11
Issue number8
DOIs
StatePublished - Jun 4 2015

Fingerprint

Amyloid
Peptides
Poisons
Ligands
Point Mutation
Alzheimer Disease

ASJC Scopus subject areas

  • Biotechnology
  • Molecular Biology

Cite this

Engineering of a peptide probe for β-amyloid aggregates. / Aoraha, Edwin; Candreva, Jason; Kim, Jin.

In: Molecular BioSystems, Vol. 11, No. 8, 04.06.2015, p. 2281-2289.

Research output: Contribution to journalArticle

Aoraha, Edwin ; Candreva, Jason ; Kim, Jin. / Engineering of a peptide probe for β-amyloid aggregates. In: Molecular BioSystems. 2015 ; Vol. 11, No. 8. pp. 2281-2289.
@article{50b96844aaea4923981550bd903932e4,
title = "Engineering of a peptide probe for β-amyloid aggregates",
abstract = "Aggregation of β-amyloid (Aβ) is central to the pathogenesis of Alzheimer's disease (AD). Aβ aggregation produces amyloid assemblies, such as oligomers and fibrils. In contrast to non-toxic Aβ monomers, Aβ oligomers and fibrils can act directly as major toxic agents and indirectly as pools of the toxic entities, respectively. Thus, the detection of Aβ aggregates is of diagnostic interest and should benefit enhanced molecular understanding of AD. Among many molecular platforms, peptide-based ligands hold promise as Aβ probes due to their relative simplicity, ease of optimization and facile conjugation to other molecular contexts. In this regard, Aβ hydrophobic segments (critical in Aβ self-assembly) or variants thereof can serve as lead molecules for Aβ probe development. Unfortunately, the resulting peptides are either highly self-aggregation-prone or their probe potential has not been thoroughly examined. In the present study, we characterized a novel peptide ligand, KLVFWAK, which was created by simple point mutations of an Aβ hydrophobic segment (16KLVFFAE22). We found that KLVFWAK displayed low self-aggregation propensity and was preferentially bound to Aβ oligomers and fibrils relative to Aβ monomers. Interestingly, binding of KLVFWAK to Aβ aggregates occurred at a non-homologous Aβ segment (e.g., Aβ C-terminal domain) rather than the homologous 16KLVFFAE22. We also show that detection of Aβ aggregates during incubation of fresh Aβ was possible with KLVFWAK, further supporting KLVFWAK's high probe potential for Aβ aggregates. In short, this study presents creation of a non-self-aggregating peptide ligand for Aβ aggregates through simple point mutation of an Aβ-derived segment.",
author = "Edwin Aoraha and Jason Candreva and Jin Kim",
year = "2015",
month = "6",
day = "4",
doi = "10.1039/c5mb00280j",
language = "English (US)",
volume = "11",
pages = "2281--2289",
journal = "Molecular BioSystems",
issn = "1742-206X",
publisher = "Royal Society of Chemistry",
number = "8",

}

TY - JOUR

T1 - Engineering of a peptide probe for β-amyloid aggregates

AU - Aoraha, Edwin

AU - Candreva, Jason

AU - Kim, Jin

PY - 2015/6/4

Y1 - 2015/6/4

N2 - Aggregation of β-amyloid (Aβ) is central to the pathogenesis of Alzheimer's disease (AD). Aβ aggregation produces amyloid assemblies, such as oligomers and fibrils. In contrast to non-toxic Aβ monomers, Aβ oligomers and fibrils can act directly as major toxic agents and indirectly as pools of the toxic entities, respectively. Thus, the detection of Aβ aggregates is of diagnostic interest and should benefit enhanced molecular understanding of AD. Among many molecular platforms, peptide-based ligands hold promise as Aβ probes due to their relative simplicity, ease of optimization and facile conjugation to other molecular contexts. In this regard, Aβ hydrophobic segments (critical in Aβ self-assembly) or variants thereof can serve as lead molecules for Aβ probe development. Unfortunately, the resulting peptides are either highly self-aggregation-prone or their probe potential has not been thoroughly examined. In the present study, we characterized a novel peptide ligand, KLVFWAK, which was created by simple point mutations of an Aβ hydrophobic segment (16KLVFFAE22). We found that KLVFWAK displayed low self-aggregation propensity and was preferentially bound to Aβ oligomers and fibrils relative to Aβ monomers. Interestingly, binding of KLVFWAK to Aβ aggregates occurred at a non-homologous Aβ segment (e.g., Aβ C-terminal domain) rather than the homologous 16KLVFFAE22. We also show that detection of Aβ aggregates during incubation of fresh Aβ was possible with KLVFWAK, further supporting KLVFWAK's high probe potential for Aβ aggregates. In short, this study presents creation of a non-self-aggregating peptide ligand for Aβ aggregates through simple point mutation of an Aβ-derived segment.

AB - Aggregation of β-amyloid (Aβ) is central to the pathogenesis of Alzheimer's disease (AD). Aβ aggregation produces amyloid assemblies, such as oligomers and fibrils. In contrast to non-toxic Aβ monomers, Aβ oligomers and fibrils can act directly as major toxic agents and indirectly as pools of the toxic entities, respectively. Thus, the detection of Aβ aggregates is of diagnostic interest and should benefit enhanced molecular understanding of AD. Among many molecular platforms, peptide-based ligands hold promise as Aβ probes due to their relative simplicity, ease of optimization and facile conjugation to other molecular contexts. In this regard, Aβ hydrophobic segments (critical in Aβ self-assembly) or variants thereof can serve as lead molecules for Aβ probe development. Unfortunately, the resulting peptides are either highly self-aggregation-prone or their probe potential has not been thoroughly examined. In the present study, we characterized a novel peptide ligand, KLVFWAK, which was created by simple point mutations of an Aβ hydrophobic segment (16KLVFFAE22). We found that KLVFWAK displayed low self-aggregation propensity and was preferentially bound to Aβ oligomers and fibrils relative to Aβ monomers. Interestingly, binding of KLVFWAK to Aβ aggregates occurred at a non-homologous Aβ segment (e.g., Aβ C-terminal domain) rather than the homologous 16KLVFFAE22. We also show that detection of Aβ aggregates during incubation of fresh Aβ was possible with KLVFWAK, further supporting KLVFWAK's high probe potential for Aβ aggregates. In short, this study presents creation of a non-self-aggregating peptide ligand for Aβ aggregates through simple point mutation of an Aβ-derived segment.

UR - http://www.scopus.com/inward/record.url?scp=84953882282&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84953882282&partnerID=8YFLogxK

U2 - 10.1039/c5mb00280j

DO - 10.1039/c5mb00280j

M3 - Article

VL - 11

SP - 2281

EP - 2289

JO - Molecular BioSystems

JF - Molecular BioSystems

SN - 1742-206X

IS - 8

ER -