Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

The ATLAS collaboration

    Research output: Contribution to journalArticle

    Abstract

    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb-1 of LHC proton–proton collision data taken at centre-of-mass energies of (Equation Present) and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.

    Original languageEnglish (US)
    Pages (from-to)1-48
    Number of pages48
    JournalEuropean Physical Journal C
    Volume74
    Issue number10
    DOIs
    StatePublished - Oct 21 2014

    Fingerprint

    Photons
    Calibration
    electron energy
    Detectors
    Electrons
    detectors
    photons
    Calorimeters
    energy
    calorimeters
    electrons
    showers
    acceptability
    center of mass
    simulation
    electromagnetism
    collisions
    decay
    estimates
    profiles

    ASJC Scopus subject areas

    • Physics and Astronomy (miscellaneous)
    • Engineering (miscellaneous)

    Cite this

    Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. / The ATLAS collaboration.

    In: European Physical Journal C, Vol. 74, No. 10, 21.10.2014, p. 1-48.

    Research output: Contribution to journalArticle

    @article{df9c02ecff6345c69d43833ec764cada,
    title = "Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data",
    abstract = "This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb-1 of LHC proton–proton collision data taken at centre-of-mass energies of (Equation Present) and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05 {\%} in most of the detector acceptance, rising to 0.2 {\%} in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 {\%} for electrons with a transverse energy of 10 GeV, and is on average 0.3 {\%} for photons. The detector resolution is determined with a relative inaccuracy of less than 10 {\%} for electrons and photons up to 60 GeV transverse energy, rising to 40 {\%} for transverse energies above 500 GeV.",
    author = "{The ATLAS Collaboration}, {ATLAS Collaboration} and G. Aad and B. Abbott and J. Abdallah and {Abdel Khalek}, S. and O. Abdinov and R. Aben and B. Abi and M. Abolins and AbouZeid, {O. S.} and H. Abramowicz and H. Abreu and R. Abreu and Y. Abulaiti and Acharya, {B. S.} and L. Adamczyk and Adams, {D. L.} and J. Adelman and S. Adomeit and T. Adye and T. Agatonovic-Jovin and Aguilar-Saavedra, {J. A.} and M. Agustoni and Ahlen, {S. P.} and F. Ahmadov and G. Aielli and H. Akerstedt and {\AA}kesson, {T. P A} and G. Akimoto and Akimov, {A. V.} and Alberghi, {G. L.} and J. Albert and S. Albrand and {Alconada Verzini}, {M. J.} and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa and G. Alexander and G. Alexandre and T. Alexopoulos and M. Alhroob and G. Alimonti and L. Alio and J. Alison and Allbrooke, {B. M M} and Allison, {L. J.} and Allport, {P. P.} and K. Cranmer and A. Haas and Mincer, {A. I.} and P. Nemethy",
    year = "2014",
    month = "10",
    day = "21",
    doi = "10.1140/epjc/s10052-014-3071-4",
    language = "English (US)",
    volume = "74",
    pages = "1--48",
    journal = "European Physical Journal C",
    issn = "1434-6044",
    publisher = "Springer New York",
    number = "10",

    }

    TY - JOUR

    T1 - Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    AU - The ATLAS collaboration

    AU - Aad, G.

    AU - Abbott, B.

    AU - Abdallah, J.

    AU - Abdel Khalek, S.

    AU - Abdinov, O.

    AU - Aben, R.

    AU - Abi, B.

    AU - Abolins, M.

    AU - AbouZeid, O. S.

    AU - Abramowicz, H.

    AU - Abreu, H.

    AU - Abreu, R.

    AU - Abulaiti, Y.

    AU - Acharya, B. S.

    AU - Adamczyk, L.

    AU - Adams, D. L.

    AU - Adelman, J.

    AU - Adomeit, S.

    AU - Adye, T.

    AU - Agatonovic-Jovin, T.

    AU - Aguilar-Saavedra, J. A.

    AU - Agustoni, M.

    AU - Ahlen, S. P.

    AU - Ahmadov, F.

    AU - Aielli, G.

    AU - Akerstedt, H.

    AU - Åkesson, T. P A

    AU - Akimoto, G.

    AU - Akimov, A. V.

    AU - Alberghi, G. L.

    AU - Albert, J.

    AU - Albrand, S.

    AU - Alconada Verzini, M. J.

    AU - Aleksa, M.

    AU - Aleksandrov, I. N.

    AU - Alexa, C.

    AU - Alexander, G.

    AU - Alexandre, G.

    AU - Alexopoulos, T.

    AU - Alhroob, M.

    AU - Alimonti, G.

    AU - Alio, L.

    AU - Alison, J.

    AU - Allbrooke, B. M M

    AU - Allison, L. J.

    AU - Allport, P. P.

    AU - Cranmer, K.

    AU - Haas, A.

    AU - Mincer, A. I.

    AU - Nemethy, P.

    PY - 2014/10/21

    Y1 - 2014/10/21

    N2 - This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb-1 of LHC proton–proton collision data taken at centre-of-mass energies of (Equation Present) and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.

    AB - This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb-1 of LHC proton–proton collision data taken at centre-of-mass energies of (Equation Present) and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.

    UR - http://www.scopus.com/inward/record.url?scp=84919918864&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84919918864&partnerID=8YFLogxK

    U2 - 10.1140/epjc/s10052-014-3071-4

    DO - 10.1140/epjc/s10052-014-3071-4

    M3 - Article

    VL - 74

    SP - 1

    EP - 48

    JO - European Physical Journal C

    JF - European Physical Journal C

    SN - 1434-6044

    IS - 10

    ER -