Einstein relation for biased random walk on Galton-Watson trees

Gerard Ben Arous, Yueyun Hu, Stefano Olla, Ofer Zeitouni

Research output: Contribution to journalArticle

Abstract

We prove the Einstein relation, relating the velocity under a small perturbation to the diffusivity in equilibrium, for certain biased random walks on Galton-Watson trees. This provides the first example where the Einstein relation is proved for motion in random media with arbitrarily slow traps.

Original languageEnglish (US)
Pages (from-to)698-721
Number of pages24
JournalAnnales de l'institut Henri Poincare (B) Probability and Statistics
Volume49
Issue number3
DOIs
StatePublished - Aug 2013

Fingerprint

Galton-Watson Tree
Albert Einstein
Biased
Random walk
Random Media
Diffusivity
Small Perturbations
Trap
Motion
Perturbation

Keywords

  • Einstein relation
  • Galton-Watson tree
  • Spine representation

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Cite this

Einstein relation for biased random walk on Galton-Watson trees. / Arous, Gerard Ben; Hu, Yueyun; Olla, Stefano; Zeitouni, Ofer.

In: Annales de l'institut Henri Poincare (B) Probability and Statistics, Vol. 49, No. 3, 08.2013, p. 698-721.

Research output: Contribution to journalArticle

@article{736b5673cbaa47ee96b53b139e79cc61,
title = "Einstein relation for biased random walk on Galton-Watson trees",
abstract = "We prove the Einstein relation, relating the velocity under a small perturbation to the diffusivity in equilibrium, for certain biased random walks on Galton-Watson trees. This provides the first example where the Einstein relation is proved for motion in random media with arbitrarily slow traps.",
keywords = "Einstein relation, Galton-Watson tree, Spine representation",
author = "Arous, {Gerard Ben} and Yueyun Hu and Stefano Olla and Ofer Zeitouni",
year = "2013",
month = "8",
doi = "10.1214/12-AIHP486",
language = "English (US)",
volume = "49",
pages = "698--721",
journal = "Annales de l'institut Henri Poincare (B) Probability and Statistics",
issn = "0246-0203",
publisher = "Institute of Mathematical Statistics",
number = "3",

}

TY - JOUR

T1 - Einstein relation for biased random walk on Galton-Watson trees

AU - Arous, Gerard Ben

AU - Hu, Yueyun

AU - Olla, Stefano

AU - Zeitouni, Ofer

PY - 2013/8

Y1 - 2013/8

N2 - We prove the Einstein relation, relating the velocity under a small perturbation to the diffusivity in equilibrium, for certain biased random walks on Galton-Watson trees. This provides the first example where the Einstein relation is proved for motion in random media with arbitrarily slow traps.

AB - We prove the Einstein relation, relating the velocity under a small perturbation to the diffusivity in equilibrium, for certain biased random walks on Galton-Watson trees. This provides the first example where the Einstein relation is proved for motion in random media with arbitrarily slow traps.

KW - Einstein relation

KW - Galton-Watson tree

KW - Spine representation

UR - http://www.scopus.com/inward/record.url?scp=84879826784&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84879826784&partnerID=8YFLogxK

U2 - 10.1214/12-AIHP486

DO - 10.1214/12-AIHP486

M3 - Article

AN - SCOPUS:84879826784

VL - 49

SP - 698

EP - 721

JO - Annales de l'institut Henri Poincare (B) Probability and Statistics

JF - Annales de l'institut Henri Poincare (B) Probability and Statistics

SN - 0246-0203

IS - 3

ER -