Dynamic Stochastic Superresolution of sparsely observed turbulent systems

M. Branicki, A. J. Majda

Research output: Contribution to journalArticle

Abstract

Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically 'superresolved' velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a fashion elucidated here. The DSS technique exploiting a simple Gaussian closure of the nonlinear stochastic forecast model emerges as the most suitable trade-off between the superresolution skill and computational complexity associated with estimating the cross-correlations between the aliasing modes of the sparsely observed turbulent signal. Such techniques offer a promising and efficient approach to constraining unresolved turbulent fluxes through stochastic superparameterization and a subsequent improvement in coarse-grained filtering and prediction of the next generation atmosphere-ocean system (AOS) models.

Original languageEnglish (US)
Pages (from-to)333-363
Number of pages31
JournalJournal of Computational Physics
Volume241
DOIs
StatePublished - May 5 2013

Fingerprint

mesh
energy spectra
estimating
pulse detonation engines
test stands
Stochastic models
Parameterization
predictions
parameterization
forecasting
cross correlation
closures
Numerical models
Computational complexity
oceans
Turbulence
velocity distribution
recovery
turbulence
Fluxes

Keywords

  • Black swans
  • Filtering
  • Stochastic parameterization
  • Superparameterization
  • Superresolution
  • Turbulence

ASJC Scopus subject areas

  • Computer Science Applications
  • Physics and Astronomy (miscellaneous)

Cite this

Dynamic Stochastic Superresolution of sparsely observed turbulent systems. / Branicki, M.; Majda, A. J.

In: Journal of Computational Physics, Vol. 241, 05.05.2013, p. 333-363.

Research output: Contribution to journalArticle

@article{e287d006117e4e9ba6566c19304f88b7,
title = "Dynamic Stochastic Superresolution of sparsely observed turbulent systems",
abstract = "Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically 'superresolved' velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a fashion elucidated here. The DSS technique exploiting a simple Gaussian closure of the nonlinear stochastic forecast model emerges as the most suitable trade-off between the superresolution skill and computational complexity associated with estimating the cross-correlations between the aliasing modes of the sparsely observed turbulent signal. Such techniques offer a promising and efficient approach to constraining unresolved turbulent fluxes through stochastic superparameterization and a subsequent improvement in coarse-grained filtering and prediction of the next generation atmosphere-ocean system (AOS) models.",
keywords = "Black swans, Filtering, Stochastic parameterization, Superparameterization, Superresolution, Turbulence",
author = "M. Branicki and Majda, {A. J.}",
year = "2013",
month = "5",
day = "5",
doi = "10.1016/j.jcp.2012.11.037",
language = "English (US)",
volume = "241",
pages = "333--363",
journal = "Journal of Computational Physics",
issn = "0021-9991",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Dynamic Stochastic Superresolution of sparsely observed turbulent systems

AU - Branicki, M.

AU - Majda, A. J.

PY - 2013/5/5

Y1 - 2013/5/5

N2 - Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically 'superresolved' velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a fashion elucidated here. The DSS technique exploiting a simple Gaussian closure of the nonlinear stochastic forecast model emerges as the most suitable trade-off between the superresolution skill and computational complexity associated with estimating the cross-correlations between the aliasing modes of the sparsely observed turbulent signal. Such techniques offer a promising and efficient approach to constraining unresolved turbulent fluxes through stochastic superparameterization and a subsequent improvement in coarse-grained filtering and prediction of the next generation atmosphere-ocean system (AOS) models.

AB - Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically 'superresolved' velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a fashion elucidated here. The DSS technique exploiting a simple Gaussian closure of the nonlinear stochastic forecast model emerges as the most suitable trade-off between the superresolution skill and computational complexity associated with estimating the cross-correlations between the aliasing modes of the sparsely observed turbulent signal. Such techniques offer a promising and efficient approach to constraining unresolved turbulent fluxes through stochastic superparameterization and a subsequent improvement in coarse-grained filtering and prediction of the next generation atmosphere-ocean system (AOS) models.

KW - Black swans

KW - Filtering

KW - Stochastic parameterization

KW - Superparameterization

KW - Superresolution

KW - Turbulence

UR - http://www.scopus.com/inward/record.url?scp=84875255976&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84875255976&partnerID=8YFLogxK

U2 - 10.1016/j.jcp.2012.11.037

DO - 10.1016/j.jcp.2012.11.037

M3 - Article

AN - SCOPUS:84875255976

VL - 241

SP - 333

EP - 363

JO - Journal of Computational Physics

JF - Journal of Computational Physics

SN - 0021-9991

ER -