Dynamic monitoring reveals motor task characteristics in prehistoric technical gestures

Johannes Pfleging, Marius Stücheli, Radu Iovita, Jonas Buchli

    Research output: Contribution to journalArticle

    Abstract

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture. These results demonstrate that different gestures used in 'common' prehistoric tasks can be distinguished quantitatively based on their dynamic parameters. Future research needs to assess our ability to reconstruct these parameters from observed usewear patterns.

    Original languageEnglish (US)
    Article number0134570
    JournalPLoS One
    Volume10
    Issue number8
    DOIs
    StatePublished - Aug 18 2015

    Fingerprint

    Gestures
    torque
    Monitoring
    monitoring
    Torque
    kinematics
    Kinematics
    scrapers
    Arsenals
    hides and skins
    anthropology
    Biomechanical Phenomena
    coevolution
    Strain gages
    forelimbs
    gauges
    Shearing
    cognition
    Archaeology
    sensors (equipment)

    ASJC Scopus subject areas

    • Medicine(all)
    • Biochemistry, Genetics and Molecular Biology(all)
    • Agricultural and Biological Sciences(all)

    Cite this

    Dynamic monitoring reveals motor task characteristics in prehistoric technical gestures. / Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas.

    In: PLoS One, Vol. 10, No. 8, 0134570, 18.08.2015.

    Research output: Contribution to journalArticle

    Pfleging, Johannes ; Stücheli, Marius ; Iovita, Radu ; Buchli, Jonas. / Dynamic monitoring reveals motor task characteristics in prehistoric technical gestures. In: PLoS One. 2015 ; Vol. 10, No. 8.
    @article{aa835fc846f14a10924dd79789738054,
    title = "Dynamic monitoring reveals motor task characteristics in prehistoric technical gestures",
    abstract = "Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture. These results demonstrate that different gestures used in 'common' prehistoric tasks can be distinguished quantitatively based on their dynamic parameters. Future research needs to assess our ability to reconstruct these parameters from observed usewear patterns.",
    author = "Johannes Pfleging and Marius St{\"u}cheli and Radu Iovita and Jonas Buchli",
    year = "2015",
    month = "8",
    day = "18",
    doi = "10.1371/journal.pone.0134570",
    language = "English (US)",
    volume = "10",
    journal = "PLoS One",
    issn = "1932-6203",
    publisher = "Public Library of Science",
    number = "8",

    }

    TY - JOUR

    T1 - Dynamic monitoring reveals motor task characteristics in prehistoric technical gestures

    AU - Pfleging, Johannes

    AU - Stücheli, Marius

    AU - Iovita, Radu

    AU - Buchli, Jonas

    PY - 2015/8/18

    Y1 - 2015/8/18

    N2 - Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture. These results demonstrate that different gestures used in 'common' prehistoric tasks can be distinguished quantitatively based on their dynamic parameters. Future research needs to assess our ability to reconstruct these parameters from observed usewear patterns.

    AB - Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture. These results demonstrate that different gestures used in 'common' prehistoric tasks can be distinguished quantitatively based on their dynamic parameters. Future research needs to assess our ability to reconstruct these parameters from observed usewear patterns.

    UR - http://www.scopus.com/inward/record.url?scp=84942694110&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84942694110&partnerID=8YFLogxK

    U2 - 10.1371/journal.pone.0134570

    DO - 10.1371/journal.pone.0134570

    M3 - Article

    VL - 10

    JO - PLoS One

    JF - PLoS One

    SN - 1932-6203

    IS - 8

    M1 - 0134570

    ER -