Dynamic mineral clouds on HD 189733b: II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: Combining scattering and emission spectra

G. K.H. Lee, K. Wood, Ian Dobbs-Dixon, A. Rice, Ch Helling

Research output: Contribution to journalArticle

Abstract

Context. As the 3D spatial properties of exoplanet atmospheres are being observed in increasing detail by current and new generations of telescopes, the modelling of the 3D scattering effects of cloud forming atmospheres with inhomogeneous opacity structures becomes increasingly important to interpret observational data. Aims. We model the scattering and emission properties of a simulated cloud forming, inhomogeneous opacity, hot Jupiter atmosphere of HD 189733b. We compare our results to available Hubble Space Telescope (HST) and Spitzer data and quantify the effects of 3D multiple scattering on observable properties of the atmosphere. We discuss potential observational properties of HD 189733b for the upcoming Transiting Exoplanet Survey Satellite (TESS) and CHaracterising ExOPlanet Satellite (CHEOPS) missions. Methods. We developed a Monte Carlo radiative transfer code and applied it to post-process output of our 3D radiative-hydrodynamic, cloud formation simulation of HD 189733b. We employed three variance reduction techniques, i.e. next event estimation, survival biasing, and composite emission biasing, to improve signal to noise of the output. For cloud particle scattering events, we constructed a log-normal area distribution from the 3D cloud formation radiative-hydrodynamic results, which is stochastically sampled in order to model the Rayleigh and Mie scattering behaviour of a mixture of grain sizes. Results. Stellar photon packets incident on the eastern dayside hemisphere show predominantly Rayleigh, single-scattering behaviour, while multiple scattering occurs on the western hemisphere. Combined scattered and thermal emitted light predictions are consistent with published HST and Spitzer secondary transit observations. Our model predictions are also consistent with geometric albedo constraints from optical wavelength ground-based polarimetry and HST B band measurements. We predict an apparent geometric albedo for HD 189733b of 0.205 and 0.229, in the TESS and CHEOPS photometric bands respectively. Conclusions. Modelling the 3D geometric scattering effects of clouds on observables of exoplanet atmospheres provides an important contribution to the attempt to determine the cloud properties of these objects. Comparisons between TESS and CHEOPS photometry may provide qualitative information on the cloud properties of nearby hot Jupiter exoplanets.

Original languageEnglish (US)
Article numberA22
JournalAstronomy and Astrophysics
Volume601
DOIs
StatePublished - May 1 2017

Fingerprint

extrasolar planets
radiative transfer
emission spectra
scattering
minerals
atmospheres
atmosphere
mineral
Hubble Space Telescope
Jupiter
opacity
albedo
hydrodynamics
Eastern Hemisphere
Western hemisphere
Jupiter atmosphere
satellite mission
prediction
output
polarimetry

Keywords

  • Methods: numerical
  • Planets and satellites: atmospheres
  • Planets and satellites: individual: HD 189733b
  • Radiative transfer

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Dynamic mineral clouds on HD 189733b : II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: Combining scattering and emission spectra. / Lee, G. K.H.; Wood, K.; Dobbs-Dixon, Ian; Rice, A.; Helling, Ch.

In: Astronomy and Astrophysics, Vol. 601, A22, 01.05.2017.

Research output: Contribution to journalArticle

@article{d894b48109cc4a26afead71c7bb67d30,
title = "Dynamic mineral clouds on HD 189733b: II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: Combining scattering and emission spectra",
abstract = "Context. As the 3D spatial properties of exoplanet atmospheres are being observed in increasing detail by current and new generations of telescopes, the modelling of the 3D scattering effects of cloud forming atmospheres with inhomogeneous opacity structures becomes increasingly important to interpret observational data. Aims. We model the scattering and emission properties of a simulated cloud forming, inhomogeneous opacity, hot Jupiter atmosphere of HD 189733b. We compare our results to available Hubble Space Telescope (HST) and Spitzer data and quantify the effects of 3D multiple scattering on observable properties of the atmosphere. We discuss potential observational properties of HD 189733b for the upcoming Transiting Exoplanet Survey Satellite (TESS) and CHaracterising ExOPlanet Satellite (CHEOPS) missions. Methods. We developed a Monte Carlo radiative transfer code and applied it to post-process output of our 3D radiative-hydrodynamic, cloud formation simulation of HD 189733b. We employed three variance reduction techniques, i.e. next event estimation, survival biasing, and composite emission biasing, to improve signal to noise of the output. For cloud particle scattering events, we constructed a log-normal area distribution from the 3D cloud formation radiative-hydrodynamic results, which is stochastically sampled in order to model the Rayleigh and Mie scattering behaviour of a mixture of grain sizes. Results. Stellar photon packets incident on the eastern dayside hemisphere show predominantly Rayleigh, single-scattering behaviour, while multiple scattering occurs on the western hemisphere. Combined scattered and thermal emitted light predictions are consistent with published HST and Spitzer secondary transit observations. Our model predictions are also consistent with geometric albedo constraints from optical wavelength ground-based polarimetry and HST B band measurements. We predict an apparent geometric albedo for HD 189733b of 0.205 and 0.229, in the TESS and CHEOPS photometric bands respectively. Conclusions. Modelling the 3D geometric scattering effects of clouds on observables of exoplanet atmospheres provides an important contribution to the attempt to determine the cloud properties of these objects. Comparisons between TESS and CHEOPS photometry may provide qualitative information on the cloud properties of nearby hot Jupiter exoplanets.",
keywords = "Methods: numerical, Planets and satellites: atmospheres, Planets and satellites: individual: HD 189733b, Radiative transfer",
author = "Lee, {G. K.H.} and K. Wood and Ian Dobbs-Dixon and A. Rice and Ch Helling",
year = "2017",
month = "5",
day = "1",
doi = "10.1051/0004-6361/201629804",
language = "English (US)",
volume = "601",
journal = "Astronomy and Astrophysics",
issn = "0004-6361",
publisher = "EDP Sciences",

}

TY - JOUR

T1 - Dynamic mineral clouds on HD 189733b

T2 - II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: Combining scattering and emission spectra

AU - Lee, G. K.H.

AU - Wood, K.

AU - Dobbs-Dixon, Ian

AU - Rice, A.

AU - Helling, Ch

PY - 2017/5/1

Y1 - 2017/5/1

N2 - Context. As the 3D spatial properties of exoplanet atmospheres are being observed in increasing detail by current and new generations of telescopes, the modelling of the 3D scattering effects of cloud forming atmospheres with inhomogeneous opacity structures becomes increasingly important to interpret observational data. Aims. We model the scattering and emission properties of a simulated cloud forming, inhomogeneous opacity, hot Jupiter atmosphere of HD 189733b. We compare our results to available Hubble Space Telescope (HST) and Spitzer data and quantify the effects of 3D multiple scattering on observable properties of the atmosphere. We discuss potential observational properties of HD 189733b for the upcoming Transiting Exoplanet Survey Satellite (TESS) and CHaracterising ExOPlanet Satellite (CHEOPS) missions. Methods. We developed a Monte Carlo radiative transfer code and applied it to post-process output of our 3D radiative-hydrodynamic, cloud formation simulation of HD 189733b. We employed three variance reduction techniques, i.e. next event estimation, survival biasing, and composite emission biasing, to improve signal to noise of the output. For cloud particle scattering events, we constructed a log-normal area distribution from the 3D cloud formation radiative-hydrodynamic results, which is stochastically sampled in order to model the Rayleigh and Mie scattering behaviour of a mixture of grain sizes. Results. Stellar photon packets incident on the eastern dayside hemisphere show predominantly Rayleigh, single-scattering behaviour, while multiple scattering occurs on the western hemisphere. Combined scattered and thermal emitted light predictions are consistent with published HST and Spitzer secondary transit observations. Our model predictions are also consistent with geometric albedo constraints from optical wavelength ground-based polarimetry and HST B band measurements. We predict an apparent geometric albedo for HD 189733b of 0.205 and 0.229, in the TESS and CHEOPS photometric bands respectively. Conclusions. Modelling the 3D geometric scattering effects of clouds on observables of exoplanet atmospheres provides an important contribution to the attempt to determine the cloud properties of these objects. Comparisons between TESS and CHEOPS photometry may provide qualitative information on the cloud properties of nearby hot Jupiter exoplanets.

AB - Context. As the 3D spatial properties of exoplanet atmospheres are being observed in increasing detail by current and new generations of telescopes, the modelling of the 3D scattering effects of cloud forming atmospheres with inhomogeneous opacity structures becomes increasingly important to interpret observational data. Aims. We model the scattering and emission properties of a simulated cloud forming, inhomogeneous opacity, hot Jupiter atmosphere of HD 189733b. We compare our results to available Hubble Space Telescope (HST) and Spitzer data and quantify the effects of 3D multiple scattering on observable properties of the atmosphere. We discuss potential observational properties of HD 189733b for the upcoming Transiting Exoplanet Survey Satellite (TESS) and CHaracterising ExOPlanet Satellite (CHEOPS) missions. Methods. We developed a Monte Carlo radiative transfer code and applied it to post-process output of our 3D radiative-hydrodynamic, cloud formation simulation of HD 189733b. We employed three variance reduction techniques, i.e. next event estimation, survival biasing, and composite emission biasing, to improve signal to noise of the output. For cloud particle scattering events, we constructed a log-normal area distribution from the 3D cloud formation radiative-hydrodynamic results, which is stochastically sampled in order to model the Rayleigh and Mie scattering behaviour of a mixture of grain sizes. Results. Stellar photon packets incident on the eastern dayside hemisphere show predominantly Rayleigh, single-scattering behaviour, while multiple scattering occurs on the western hemisphere. Combined scattered and thermal emitted light predictions are consistent with published HST and Spitzer secondary transit observations. Our model predictions are also consistent with geometric albedo constraints from optical wavelength ground-based polarimetry and HST B band measurements. We predict an apparent geometric albedo for HD 189733b of 0.205 and 0.229, in the TESS and CHEOPS photometric bands respectively. Conclusions. Modelling the 3D geometric scattering effects of clouds on observables of exoplanet atmospheres provides an important contribution to the attempt to determine the cloud properties of these objects. Comparisons between TESS and CHEOPS photometry may provide qualitative information on the cloud properties of nearby hot Jupiter exoplanets.

KW - Methods: numerical

KW - Planets and satellites: atmospheres

KW - Planets and satellites: individual: HD 189733b

KW - Radiative transfer

UR - http://www.scopus.com/inward/record.url?scp=85018608183&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85018608183&partnerID=8YFLogxK

U2 - 10.1051/0004-6361/201629804

DO - 10.1051/0004-6361/201629804

M3 - Article

VL - 601

JO - Astronomy and Astrophysics

JF - Astronomy and Astrophysics

SN - 0004-6361

M1 - A22

ER -