Dynamic critical exponent of the BFACF algorithm for self-avoiding walks

Sergio Caracciolo, Andrea Pelissetto, Alan D. Sokal

    Research output: Contribution to journalArticle

    Abstract

    We study the dynamic critical behavior of the BFACF algorithm for generating self-avoiding walks with variable length and fixed endpoints. We argue theoretically, and confirm by Monte Carlo simulations in dimensions 2, 3, and 4, that the autocorrelation time scales as τint, NR~ξ4R~〈N> 4 v.

    Original languageEnglish (US)
    Pages (from-to)857-865
    Number of pages9
    JournalJournal of Statistical Physics
    Volume63
    Issue number5-6
    DOIs
    StatePublished - Jun 1991

    Fingerprint

    Self-avoiding Walk
    Critical Behavior
    Autocorrelation
    Critical Exponents
    Dynamic Behavior
    autocorrelation
    Time Scales
    Monte Carlo Simulation
    exponents
    simulation

    Keywords

    • BFACF algorithm
    • dynamic critical exponent
    • Monte Carlo
    • polymer
    • Self-avoiding walk

    ASJC Scopus subject areas

    • Statistical and Nonlinear Physics
    • Physics and Astronomy(all)
    • Mathematical Physics

    Cite this

    Dynamic critical exponent of the BFACF algorithm for self-avoiding walks. / Caracciolo, Sergio; Pelissetto, Andrea; Sokal, Alan D.

    In: Journal of Statistical Physics, Vol. 63, No. 5-6, 06.1991, p. 857-865.

    Research output: Contribution to journalArticle

    Caracciolo, Sergio ; Pelissetto, Andrea ; Sokal, Alan D. / Dynamic critical exponent of the BFACF algorithm for self-avoiding walks. In: Journal of Statistical Physics. 1991 ; Vol. 63, No. 5-6. pp. 857-865.
    @article{0e62eb11d93a4f6dab1f8dcdb48515d9,
    title = "Dynamic critical exponent of the BFACF algorithm for self-avoiding walks",
    abstract = "We study the dynamic critical behavior of the BFACF algorithm for generating self-avoiding walks with variable length and fixed endpoints. We argue theoretically, and confirm by Monte Carlo simulations in dimensions 2, 3, and 4, that the autocorrelation time scales as τint, NR~ξ4R~〈N> 4 v.",
    keywords = "BFACF algorithm, dynamic critical exponent, Monte Carlo, polymer, Self-avoiding walk",
    author = "Sergio Caracciolo and Andrea Pelissetto and Sokal, {Alan D.}",
    year = "1991",
    month = "6",
    doi = "10.1007/BF01029987",
    language = "English (US)",
    volume = "63",
    pages = "857--865",
    journal = "Journal of Statistical Physics",
    issn = "0022-4715",
    publisher = "Springer New York",
    number = "5-6",

    }

    TY - JOUR

    T1 - Dynamic critical exponent of the BFACF algorithm for self-avoiding walks

    AU - Caracciolo, Sergio

    AU - Pelissetto, Andrea

    AU - Sokal, Alan D.

    PY - 1991/6

    Y1 - 1991/6

    N2 - We study the dynamic critical behavior of the BFACF algorithm for generating self-avoiding walks with variable length and fixed endpoints. We argue theoretically, and confirm by Monte Carlo simulations in dimensions 2, 3, and 4, that the autocorrelation time scales as τint, NR~ξ4R~〈N> 4 v.

    AB - We study the dynamic critical behavior of the BFACF algorithm for generating self-avoiding walks with variable length and fixed endpoints. We argue theoretically, and confirm by Monte Carlo simulations in dimensions 2, 3, and 4, that the autocorrelation time scales as τint, NR~ξ4R~〈N> 4 v.

    KW - BFACF algorithm

    KW - dynamic critical exponent

    KW - Monte Carlo

    KW - polymer

    KW - Self-avoiding walk

    UR - http://www.scopus.com/inward/record.url?scp=0002014052&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=0002014052&partnerID=8YFLogxK

    U2 - 10.1007/BF01029987

    DO - 10.1007/BF01029987

    M3 - Article

    VL - 63

    SP - 857

    EP - 865

    JO - Journal of Statistical Physics

    JF - Journal of Statistical Physics

    SN - 0022-4715

    IS - 5-6

    ER -