Drug binding to a DNA BZ molecule: Analysis by chemical footprinting

Neville R. Kallenbach

Research output: Contribution to journalArticle

Abstract

The polymorphism in a DNA 16-mer (designated BZ-II) has been investigated by means of circular dichroism (CD) spectroscopy and chemical footprinting. CD spectra indicate that, in low salt, the oligomer is fully right-handed whereas, in high salt, it possesses a B-Z conformational junction: half of the duplex is right-handed while the other half is left-handed. Treatment of BZ-II with diethyl pyrocarbonate (DEPC) confirms the existence of a left-handed segment of the duplex in high salt: enhanced DEPC scission occurs at the G residues in the alternating CG sequence. The scission patterns of the upper and lower strands in BZ-II by the reactive chemical probe MPE-Fe(II), and the antitumor antibiotics dynemicin and Fe-(II)·bleomycin, are different under low salt conditions. The 3′-terminal region of both upper and lower strands and the middle region of the upper strand of BZ-II are preferential cleavage sites in low salt. This result suggests that the methylated cytosines or the alternating CG domain in the molecule perturbs the DNA structure. Under high salt conditions, the reactivity of the Z-DNA segment of BZ-II for MPE-Fe(II) and Fe(II)·bleomycin is dramatically enhanced, while it is reduced in the case of dynemicin. Excess propidium (PI) eliminates preferential cleavage by each of these chemical probes in high salt conditions. This is due in part to conversion of the BZ-DNA molecule into B-DNA, as is seen by a DEPC modification experiment. At low PI concentrations, the DEPC experiment suggests that the Z conformation remains intact; thus, at sufficiently low drug concentrations, we believe the cleavage data reveal a preferential binding mode of these drugs to the Z sequence itself that does not require concomitant Z → B isomerization.

Original languageEnglish (US)
Pages (from-to)11735-11741
Number of pages7
JournalBiochemistry
Volume30
Issue number51
StatePublished - 1991

Fingerprint

Diethyl Pyrocarbonate
Salts
Molecules
DNA
Pharmaceutical Preparations
Propidium
Circular Dichroism
Z-Form DNA
Circular dichroism spectroscopy
Cytosine
Dichroism
Isomerization
Polymorphism
Oligomers
Conformations
Spectrum Analysis
Experiments
Anti-Bacterial Agents
iron bleomycin
methidiumpropyl-EDTA-iron(II)

ASJC Scopus subject areas

  • Biochemistry

Cite this

Drug binding to a DNA BZ molecule : Analysis by chemical footprinting. / Kallenbach, Neville R.

In: Biochemistry, Vol. 30, No. 51, 1991, p. 11735-11741.

Research output: Contribution to journalArticle

Kallenbach, NR 1991, 'Drug binding to a DNA BZ molecule: Analysis by chemical footprinting', Biochemistry, vol. 30, no. 51, pp. 11735-11741.
Kallenbach, Neville R. / Drug binding to a DNA BZ molecule : Analysis by chemical footprinting. In: Biochemistry. 1991 ; Vol. 30, No. 51. pp. 11735-11741.
@article{90cc35f3c0384ac7a2ecea85070829b8,
title = "Drug binding to a DNA BZ molecule: Analysis by chemical footprinting",
abstract = "The polymorphism in a DNA 16-mer (designated BZ-II) has been investigated by means of circular dichroism (CD) spectroscopy and chemical footprinting. CD spectra indicate that, in low salt, the oligomer is fully right-handed whereas, in high salt, it possesses a B-Z conformational junction: half of the duplex is right-handed while the other half is left-handed. Treatment of BZ-II with diethyl pyrocarbonate (DEPC) confirms the existence of a left-handed segment of the duplex in high salt: enhanced DEPC scission occurs at the G residues in the alternating CG sequence. The scission patterns of the upper and lower strands in BZ-II by the reactive chemical probe MPE-Fe(II), and the antitumor antibiotics dynemicin and Fe-(II)·bleomycin, are different under low salt conditions. The 3′-terminal region of both upper and lower strands and the middle region of the upper strand of BZ-II are preferential cleavage sites in low salt. This result suggests that the methylated cytosines or the alternating CG domain in the molecule perturbs the DNA structure. Under high salt conditions, the reactivity of the Z-DNA segment of BZ-II for MPE-Fe(II) and Fe(II)·bleomycin is dramatically enhanced, while it is reduced in the case of dynemicin. Excess propidium (PI) eliminates preferential cleavage by each of these chemical probes in high salt conditions. This is due in part to conversion of the BZ-DNA molecule into B-DNA, as is seen by a DEPC modification experiment. At low PI concentrations, the DEPC experiment suggests that the Z conformation remains intact; thus, at sufficiently low drug concentrations, we believe the cleavage data reveal a preferential binding mode of these drugs to the Z sequence itself that does not require concomitant Z → B isomerization.",
author = "Kallenbach, {Neville R.}",
year = "1991",
language = "English (US)",
volume = "30",
pages = "11735--11741",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "51",

}

TY - JOUR

T1 - Drug binding to a DNA BZ molecule

T2 - Analysis by chemical footprinting

AU - Kallenbach, Neville R.

PY - 1991

Y1 - 1991

N2 - The polymorphism in a DNA 16-mer (designated BZ-II) has been investigated by means of circular dichroism (CD) spectroscopy and chemical footprinting. CD spectra indicate that, in low salt, the oligomer is fully right-handed whereas, in high salt, it possesses a B-Z conformational junction: half of the duplex is right-handed while the other half is left-handed. Treatment of BZ-II with diethyl pyrocarbonate (DEPC) confirms the existence of a left-handed segment of the duplex in high salt: enhanced DEPC scission occurs at the G residues in the alternating CG sequence. The scission patterns of the upper and lower strands in BZ-II by the reactive chemical probe MPE-Fe(II), and the antitumor antibiotics dynemicin and Fe-(II)·bleomycin, are different under low salt conditions. The 3′-terminal region of both upper and lower strands and the middle region of the upper strand of BZ-II are preferential cleavage sites in low salt. This result suggests that the methylated cytosines or the alternating CG domain in the molecule perturbs the DNA structure. Under high salt conditions, the reactivity of the Z-DNA segment of BZ-II for MPE-Fe(II) and Fe(II)·bleomycin is dramatically enhanced, while it is reduced in the case of dynemicin. Excess propidium (PI) eliminates preferential cleavage by each of these chemical probes in high salt conditions. This is due in part to conversion of the BZ-DNA molecule into B-DNA, as is seen by a DEPC modification experiment. At low PI concentrations, the DEPC experiment suggests that the Z conformation remains intact; thus, at sufficiently low drug concentrations, we believe the cleavage data reveal a preferential binding mode of these drugs to the Z sequence itself that does not require concomitant Z → B isomerization.

AB - The polymorphism in a DNA 16-mer (designated BZ-II) has been investigated by means of circular dichroism (CD) spectroscopy and chemical footprinting. CD spectra indicate that, in low salt, the oligomer is fully right-handed whereas, in high salt, it possesses a B-Z conformational junction: half of the duplex is right-handed while the other half is left-handed. Treatment of BZ-II with diethyl pyrocarbonate (DEPC) confirms the existence of a left-handed segment of the duplex in high salt: enhanced DEPC scission occurs at the G residues in the alternating CG sequence. The scission patterns of the upper and lower strands in BZ-II by the reactive chemical probe MPE-Fe(II), and the antitumor antibiotics dynemicin and Fe-(II)·bleomycin, are different under low salt conditions. The 3′-terminal region of both upper and lower strands and the middle region of the upper strand of BZ-II are preferential cleavage sites in low salt. This result suggests that the methylated cytosines or the alternating CG domain in the molecule perturbs the DNA structure. Under high salt conditions, the reactivity of the Z-DNA segment of BZ-II for MPE-Fe(II) and Fe(II)·bleomycin is dramatically enhanced, while it is reduced in the case of dynemicin. Excess propidium (PI) eliminates preferential cleavage by each of these chemical probes in high salt conditions. This is due in part to conversion of the BZ-DNA molecule into B-DNA, as is seen by a DEPC modification experiment. At low PI concentrations, the DEPC experiment suggests that the Z conformation remains intact; thus, at sufficiently low drug concentrations, we believe the cleavage data reveal a preferential binding mode of these drugs to the Z sequence itself that does not require concomitant Z → B isomerization.

UR - http://www.scopus.com/inward/record.url?scp=0026356181&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026356181&partnerID=8YFLogxK

M3 - Article

VL - 30

SP - 11735

EP - 11741

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 51

ER -