Abstract
The unwinding of supercoiled φX174 RFI DNA induced by the tumorigenic (+) and non-tumorigenic (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) has been investigated by agarose slab-gel and ethidium titration tube gel electrophoresis. The differences in adduct conformations were verified by flow linear dichroism techniques. Both enantiomers cause a reversible unwinding by the formation of noncovalent intercalative complexes. The effects of covalently bound BPDE residues on the electrophoretic mobilities of the RF I DNA form in agarose gels were investigated in detail in the range of binding ratios rb = 0.0 - 0.06 (covalently bound BPDE residues/nucleotide). In this range of rb values, there is a striking difference in the mobilities of (+)-BPDE- and (-)-BPDE-adducted φX174 DNA in agarose slab-gels, the covalently bound (+)-BPDE residues causing a significantly greater retardation than (-)-BPDE residues. Increasing the level of covalent adducts beyond rb = 0.06 in the case of the (+)-BPDE enantiomer, leads to further unwinding and a minimum in the mobilities (corresponding to comigration of the nicked form and the covalently closed relaxed modified form) at rb 0.10 ± 0.01; at still higher rb values, rewinding of the modified DNA in the opposite sense is observed. From the minimum in the mobility, a mean unwinding angle (per BPDE residue) of θ = 12 ± 1.5° is determined, which is in good agreement the value of θ = 11 ± 1.8° obtained by the tube gel titration method. Using this latter method, values of θ = 6.8 ± 1.7° for (-)-BPDE-φX174 adducts are observed. It is concluded that agarose slab gel techniques are not suitable for determining unwinding angles for (-)-BPDE-modified φX174 DNA because the alterations in the tertiary structures for rb < 0.06 are too small to cause sufficiently large changes in the electrophoretic mobilities. The major trans (+)-BPDE-N2-guanosine covalent adduct is situated at external binding sites and the mechanisms of unwinding are therefore different from those relevant to noncovalent intercalative BPDE-DNA complexes or to classical intercalating drug molecules; a flexible hinge joint and a widening of the minor groove at the site of the lesion may account for the observed unwinding effects. The more heterogeneous (-)-BPDE-nucleoside adducts (involving cis and trans N2-guanosine, and adenosine adducts) are less effective in causing unwinding of supercoiled DNA for reasons which remain to be elucidated.
Original language | English (US) |
---|---|
Pages (from-to) | 6167-6176 |
Number of pages | 10 |
Journal | Nucleic Acids Research |
Volume | 20 |
Issue number | 23 |
State | Published - 1992 |
Fingerprint
ASJC Scopus subject areas
- Genetics
- Statistics, Probability and Uncertainty
- Applied Mathematics
- Health, Toxicology and Mutagenesis
- Toxicology
- Genetics(clinical)
Cite this
Differences in unwinding of supercoiled DNA induced by the two enantiomers of anti-benzo[a]pyrene diol epoxide. / Xu, Rong; Birke, Sheryl; Carberry, Susan E.; Geacintov, Nicholas; Swenberg, Charles E.; Harvey, Ronald G.
In: Nucleic Acids Research, Vol. 20, No. 23, 1992, p. 6167-6176.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Differences in unwinding of supercoiled DNA induced by the two enantiomers of anti-benzo[a]pyrene diol epoxide
AU - Xu, Rong
AU - Birke, Sheryl
AU - Carberry, Susan E.
AU - Geacintov, Nicholas
AU - Swenberg, Charles E.
AU - Harvey, Ronald G.
PY - 1992
Y1 - 1992
N2 - The unwinding of supercoiled φX174 RFI DNA induced by the tumorigenic (+) and non-tumorigenic (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) has been investigated by agarose slab-gel and ethidium titration tube gel electrophoresis. The differences in adduct conformations were verified by flow linear dichroism techniques. Both enantiomers cause a reversible unwinding by the formation of noncovalent intercalative complexes. The effects of covalently bound BPDE residues on the electrophoretic mobilities of the RF I DNA form in agarose gels were investigated in detail in the range of binding ratios rb = 0.0 - 0.06 (covalently bound BPDE residues/nucleotide). In this range of rb values, there is a striking difference in the mobilities of (+)-BPDE- and (-)-BPDE-adducted φX174 DNA in agarose slab-gels, the covalently bound (+)-BPDE residues causing a significantly greater retardation than (-)-BPDE residues. Increasing the level of covalent adducts beyond rb = 0.06 in the case of the (+)-BPDE enantiomer, leads to further unwinding and a minimum in the mobilities (corresponding to comigration of the nicked form and the covalently closed relaxed modified form) at rb 0.10 ± 0.01; at still higher rb values, rewinding of the modified DNA in the opposite sense is observed. From the minimum in the mobility, a mean unwinding angle (per BPDE residue) of θ = 12 ± 1.5° is determined, which is in good agreement the value of θ = 11 ± 1.8° obtained by the tube gel titration method. Using this latter method, values of θ = 6.8 ± 1.7° for (-)-BPDE-φX174 adducts are observed. It is concluded that agarose slab gel techniques are not suitable for determining unwinding angles for (-)-BPDE-modified φX174 DNA because the alterations in the tertiary structures for rb < 0.06 are too small to cause sufficiently large changes in the electrophoretic mobilities. The major trans (+)-BPDE-N2-guanosine covalent adduct is situated at external binding sites and the mechanisms of unwinding are therefore different from those relevant to noncovalent intercalative BPDE-DNA complexes or to classical intercalating drug molecules; a flexible hinge joint and a widening of the minor groove at the site of the lesion may account for the observed unwinding effects. The more heterogeneous (-)-BPDE-nucleoside adducts (involving cis and trans N2-guanosine, and adenosine adducts) are less effective in causing unwinding of supercoiled DNA for reasons which remain to be elucidated.
AB - The unwinding of supercoiled φX174 RFI DNA induced by the tumorigenic (+) and non-tumorigenic (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) has been investigated by agarose slab-gel and ethidium titration tube gel electrophoresis. The differences in adduct conformations were verified by flow linear dichroism techniques. Both enantiomers cause a reversible unwinding by the formation of noncovalent intercalative complexes. The effects of covalently bound BPDE residues on the electrophoretic mobilities of the RF I DNA form in agarose gels were investigated in detail in the range of binding ratios rb = 0.0 - 0.06 (covalently bound BPDE residues/nucleotide). In this range of rb values, there is a striking difference in the mobilities of (+)-BPDE- and (-)-BPDE-adducted φX174 DNA in agarose slab-gels, the covalently bound (+)-BPDE residues causing a significantly greater retardation than (-)-BPDE residues. Increasing the level of covalent adducts beyond rb = 0.06 in the case of the (+)-BPDE enantiomer, leads to further unwinding and a minimum in the mobilities (corresponding to comigration of the nicked form and the covalently closed relaxed modified form) at rb 0.10 ± 0.01; at still higher rb values, rewinding of the modified DNA in the opposite sense is observed. From the minimum in the mobility, a mean unwinding angle (per BPDE residue) of θ = 12 ± 1.5° is determined, which is in good agreement the value of θ = 11 ± 1.8° obtained by the tube gel titration method. Using this latter method, values of θ = 6.8 ± 1.7° for (-)-BPDE-φX174 adducts are observed. It is concluded that agarose slab gel techniques are not suitable for determining unwinding angles for (-)-BPDE-modified φX174 DNA because the alterations in the tertiary structures for rb < 0.06 are too small to cause sufficiently large changes in the electrophoretic mobilities. The major trans (+)-BPDE-N2-guanosine covalent adduct is situated at external binding sites and the mechanisms of unwinding are therefore different from those relevant to noncovalent intercalative BPDE-DNA complexes or to classical intercalating drug molecules; a flexible hinge joint and a widening of the minor groove at the site of the lesion may account for the observed unwinding effects. The more heterogeneous (-)-BPDE-nucleoside adducts (involving cis and trans N2-guanosine, and adenosine adducts) are less effective in causing unwinding of supercoiled DNA for reasons which remain to be elucidated.
UR - http://www.scopus.com/inward/record.url?scp=0027093114&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027093114&partnerID=8YFLogxK
M3 - Article
C2 - 1475180
AN - SCOPUS:0027093114
VL - 20
SP - 6167
EP - 6176
JO - Nucleic Acids Research
JF - Nucleic Acids Research
SN - 0305-1048
IS - 23
ER -