Dexamethasone reverses adrenalectomy-induced neuronal de-differentiation in midbrain raphe-hippocampus arise

E. C. Azmitia, B. Liao

Research output: Contribution to journalArticle

Abstract

Differentiation leads to specific morphological and biochemical characteristics. We examined whether epigenetic factors (e.g., glucocorticoids) are required to maintain neuronal differentiation in the adult brain. In the midbrain, adrenalectomy (ADX) (1-2 wk) reduced the size of tryptophan hydroxylase (WH)-immunoreactive (IR) neurons. ADX rats exposed to short-term (24-72-h) dexamethasone (ST-DEX)in the drinking saline (10 mg/l) showed an increase in WH protein, somal area and dendritic size of WH-IR neurons. In the hippocampus, ADX for 2-3 mo (long-term; LT) reduced Nissl staining, calbindin (CBD)-IR and 5-HT(1A) receptor mRNA in the granular cell layer, and the size of the molecular layer and its CBD-IR dendrites. Small vimentin (Vim)-IR glial cells emerged in the granular layer. ST-DEX after LT-ADX rapidly induced a recovery of 5-HT(1A) mRNA, Nissl labeling and CBD-IR in the granule cell layer. In the molecular layer, there was an increase in the area and in the number of CBD-IR dendrites. Furthermore, the Vim-IR glial cells were enlarged in size and branching. The rate of cell proliferation was studied in these animals. Immunostaining with antibodies against proliferating cell nuclear antigen (PCNA) and use of bromouridine argue against enhanced neurogenesis after ST-DEX in LT-ADX. We propose that glucocorticoids induce and maintain differentiation of serotonergic and CBD-IR neurons in the midbrain-hippocampal axis. A neuronotrophic role for the glial 5-HT(1A) receptor is suggested.

Original languageEnglish (US)
Pages (from-to)180-194
Number of pages15
JournalAnnals of the New York Academy of Sciences
Volume746
StatePublished - 1994

Fingerprint

Calbindins
Adrenalectomy
Dexamethasone
Hippocampus
Neuroglia
Neurons
Receptor, Serotonin, 5-HT1A
Vimentin
Dendrites
Mesencephalon
Glucocorticoids
Cells
Tryptophan Hydroxylase
Messenger RNA
Neurogenesis
Proliferating Cell Nuclear Antigen
Cell proliferation
Cell Size
Epigenomics
Labeling

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

@article{71021a680b44473caaa36a086469cc80,
title = "Dexamethasone reverses adrenalectomy-induced neuronal de-differentiation in midbrain raphe-hippocampus arise",
abstract = "Differentiation leads to specific morphological and biochemical characteristics. We examined whether epigenetic factors (e.g., glucocorticoids) are required to maintain neuronal differentiation in the adult brain. In the midbrain, adrenalectomy (ADX) (1-2 wk) reduced the size of tryptophan hydroxylase (WH)-immunoreactive (IR) neurons. ADX rats exposed to short-term (24-72-h) dexamethasone (ST-DEX)in the drinking saline (10 mg/l) showed an increase in WH protein, somal area and dendritic size of WH-IR neurons. In the hippocampus, ADX for 2-3 mo (long-term; LT) reduced Nissl staining, calbindin (CBD)-IR and 5-HT(1A) receptor mRNA in the granular cell layer, and the size of the molecular layer and its CBD-IR dendrites. Small vimentin (Vim)-IR glial cells emerged in the granular layer. ST-DEX after LT-ADX rapidly induced a recovery of 5-HT(1A) mRNA, Nissl labeling and CBD-IR in the granule cell layer. In the molecular layer, there was an increase in the area and in the number of CBD-IR dendrites. Furthermore, the Vim-IR glial cells were enlarged in size and branching. The rate of cell proliferation was studied in these animals. Immunostaining with antibodies against proliferating cell nuclear antigen (PCNA) and use of bromouridine argue against enhanced neurogenesis after ST-DEX in LT-ADX. We propose that glucocorticoids induce and maintain differentiation of serotonergic and CBD-IR neurons in the midbrain-hippocampal axis. A neuronotrophic role for the glial 5-HT(1A) receptor is suggested.",
author = "Azmitia, {E. C.} and B. Liao",
year = "1994",
language = "English (US)",
volume = "746",
pages = "180--194",
journal = "Annals of the New York Academy of Sciences",
issn = "0077-8923",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Dexamethasone reverses adrenalectomy-induced neuronal de-differentiation in midbrain raphe-hippocampus arise

AU - Azmitia, E. C.

AU - Liao, B.

PY - 1994

Y1 - 1994

N2 - Differentiation leads to specific morphological and biochemical characteristics. We examined whether epigenetic factors (e.g., glucocorticoids) are required to maintain neuronal differentiation in the adult brain. In the midbrain, adrenalectomy (ADX) (1-2 wk) reduced the size of tryptophan hydroxylase (WH)-immunoreactive (IR) neurons. ADX rats exposed to short-term (24-72-h) dexamethasone (ST-DEX)in the drinking saline (10 mg/l) showed an increase in WH protein, somal area and dendritic size of WH-IR neurons. In the hippocampus, ADX for 2-3 mo (long-term; LT) reduced Nissl staining, calbindin (CBD)-IR and 5-HT(1A) receptor mRNA in the granular cell layer, and the size of the molecular layer and its CBD-IR dendrites. Small vimentin (Vim)-IR glial cells emerged in the granular layer. ST-DEX after LT-ADX rapidly induced a recovery of 5-HT(1A) mRNA, Nissl labeling and CBD-IR in the granule cell layer. In the molecular layer, there was an increase in the area and in the number of CBD-IR dendrites. Furthermore, the Vim-IR glial cells were enlarged in size and branching. The rate of cell proliferation was studied in these animals. Immunostaining with antibodies against proliferating cell nuclear antigen (PCNA) and use of bromouridine argue against enhanced neurogenesis after ST-DEX in LT-ADX. We propose that glucocorticoids induce and maintain differentiation of serotonergic and CBD-IR neurons in the midbrain-hippocampal axis. A neuronotrophic role for the glial 5-HT(1A) receptor is suggested.

AB - Differentiation leads to specific morphological and biochemical characteristics. We examined whether epigenetic factors (e.g., glucocorticoids) are required to maintain neuronal differentiation in the adult brain. In the midbrain, adrenalectomy (ADX) (1-2 wk) reduced the size of tryptophan hydroxylase (WH)-immunoreactive (IR) neurons. ADX rats exposed to short-term (24-72-h) dexamethasone (ST-DEX)in the drinking saline (10 mg/l) showed an increase in WH protein, somal area and dendritic size of WH-IR neurons. In the hippocampus, ADX for 2-3 mo (long-term; LT) reduced Nissl staining, calbindin (CBD)-IR and 5-HT(1A) receptor mRNA in the granular cell layer, and the size of the molecular layer and its CBD-IR dendrites. Small vimentin (Vim)-IR glial cells emerged in the granular layer. ST-DEX after LT-ADX rapidly induced a recovery of 5-HT(1A) mRNA, Nissl labeling and CBD-IR in the granule cell layer. In the molecular layer, there was an increase in the area and in the number of CBD-IR dendrites. Furthermore, the Vim-IR glial cells were enlarged in size and branching. The rate of cell proliferation was studied in these animals. Immunostaining with antibodies against proliferating cell nuclear antigen (PCNA) and use of bromouridine argue against enhanced neurogenesis after ST-DEX in LT-ADX. We propose that glucocorticoids induce and maintain differentiation of serotonergic and CBD-IR neurons in the midbrain-hippocampal axis. A neuronotrophic role for the glial 5-HT(1A) receptor is suggested.

UR - http://www.scopus.com/inward/record.url?scp=0028715795&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028715795&partnerID=8YFLogxK

M3 - Article

C2 - 7825875

AN - SCOPUS:0028715795

VL - 746

SP - 180

EP - 194

JO - Annals of the New York Academy of Sciences

JF - Annals of the New York Academy of Sciences

SN - 0077-8923

ER -