Developmental course of performance fields with familiar stimuli

Yun Xian Ho, Katie S. Mahon, Marisa Carrasco

Research output: Contribution to journalArticle

Abstract

We know that adults' contrast sensitivity and spatial resolution are better along the horizontal than vertical meridian -a.k.a. horizontal vertical anisotropy (HVA)- and better in the lower than upper vertical meridian -a.k.a. vertical meridian asymmetry (VMA; Carrasco et al., Spatial Vision 2000, JOV 2002). We also know that for adults the speed of information accrual follows the same pattern, i.e. it is faster along the horizontal meridian and slowest at the North locations (Carrasco et al., VSS 2002). In this study, we investigated the developmental course of these asymmetries with children ages 5-12, by using stimuli of different levels of familiarity, such as shapes, letters and numbers. We used a 4AFC character identification task to determine the presence and extent of the HVA and VMA. Each trial consisted of a central fixation point followed by a 1 stimulus, presented for 50 ms. The stimulus appeared at one of 10 possible eccentricities, ranging from 4 to 13, along each of the 8 principal meridians. The brief display duration precluded eye movements, allowing us to equate field and retinal eccentricities. Results indicate that the HVA was present at all ages for all stimuli tested. Anatomical and physiological findings in macaque monkey provide a possible neural correlate for the visual constraints underlying the HVA. Surprisingly, the VMA did not emerge consistently in either adults or children for the different stimuli tested. This finding suggests that the visual constraints underlying the VMA reported before may play less of a role in our identification of more familiar stimuli. Studying the developmental course of visual field asymmetries helps elucidate the role that the environment plays in perceptual performance, and may have implications for human factors.

Original languageEnglish (US)
JournalJournal of vision
Volume3
Issue number9
DOIs
StatePublished - 2003

Fingerprint

Meridians
Anisotropy
Contrast Sensitivity
Macaca
Eye Movements
Visual Fields
Haplorhini

ASJC Scopus subject areas

  • Ophthalmology

Cite this

Developmental course of performance fields with familiar stimuli. / Ho, Yun Xian; Mahon, Katie S.; Carrasco, Marisa.

In: Journal of vision, Vol. 3, No. 9, 2003.

Research output: Contribution to journalArticle

Ho, Yun Xian ; Mahon, Katie S. ; Carrasco, Marisa. / Developmental course of performance fields with familiar stimuli. In: Journal of vision. 2003 ; Vol. 3, No. 9.
@article{e30d050bcded4b75b66c04eae0d50196,
title = "Developmental course of performance fields with familiar stimuli",
abstract = "We know that adults' contrast sensitivity and spatial resolution are better along the horizontal than vertical meridian -a.k.a. horizontal vertical anisotropy (HVA)- and better in the lower than upper vertical meridian -a.k.a. vertical meridian asymmetry (VMA; Carrasco et al., Spatial Vision 2000, JOV 2002). We also know that for adults the speed of information accrual follows the same pattern, i.e. it is faster along the horizontal meridian and slowest at the North locations (Carrasco et al., VSS 2002). In this study, we investigated the developmental course of these asymmetries with children ages 5-12, by using stimuli of different levels of familiarity, such as shapes, letters and numbers. We used a 4AFC character identification task to determine the presence and extent of the HVA and VMA. Each trial consisted of a central fixation point followed by a 1 stimulus, presented for 50 ms. The stimulus appeared at one of 10 possible eccentricities, ranging from 4 to 13, along each of the 8 principal meridians. The brief display duration precluded eye movements, allowing us to equate field and retinal eccentricities. Results indicate that the HVA was present at all ages for all stimuli tested. Anatomical and physiological findings in macaque monkey provide a possible neural correlate for the visual constraints underlying the HVA. Surprisingly, the VMA did not emerge consistently in either adults or children for the different stimuli tested. This finding suggests that the visual constraints underlying the VMA reported before may play less of a role in our identification of more familiar stimuli. Studying the developmental course of visual field asymmetries helps elucidate the role that the environment plays in perceptual performance, and may have implications for human factors.",
author = "Ho, {Yun Xian} and Mahon, {Katie S.} and Marisa Carrasco",
year = "2003",
doi = "10.1167/3.9.501",
language = "English (US)",
volume = "3",
journal = "Journal of vision",
issn = "1534-7362",
number = "9",

}

TY - JOUR

T1 - Developmental course of performance fields with familiar stimuli

AU - Ho, Yun Xian

AU - Mahon, Katie S.

AU - Carrasco, Marisa

PY - 2003

Y1 - 2003

N2 - We know that adults' contrast sensitivity and spatial resolution are better along the horizontal than vertical meridian -a.k.a. horizontal vertical anisotropy (HVA)- and better in the lower than upper vertical meridian -a.k.a. vertical meridian asymmetry (VMA; Carrasco et al., Spatial Vision 2000, JOV 2002). We also know that for adults the speed of information accrual follows the same pattern, i.e. it is faster along the horizontal meridian and slowest at the North locations (Carrasco et al., VSS 2002). In this study, we investigated the developmental course of these asymmetries with children ages 5-12, by using stimuli of different levels of familiarity, such as shapes, letters and numbers. We used a 4AFC character identification task to determine the presence and extent of the HVA and VMA. Each trial consisted of a central fixation point followed by a 1 stimulus, presented for 50 ms. The stimulus appeared at one of 10 possible eccentricities, ranging from 4 to 13, along each of the 8 principal meridians. The brief display duration precluded eye movements, allowing us to equate field and retinal eccentricities. Results indicate that the HVA was present at all ages for all stimuli tested. Anatomical and physiological findings in macaque monkey provide a possible neural correlate for the visual constraints underlying the HVA. Surprisingly, the VMA did not emerge consistently in either adults or children for the different stimuli tested. This finding suggests that the visual constraints underlying the VMA reported before may play less of a role in our identification of more familiar stimuli. Studying the developmental course of visual field asymmetries helps elucidate the role that the environment plays in perceptual performance, and may have implications for human factors.

AB - We know that adults' contrast sensitivity and spatial resolution are better along the horizontal than vertical meridian -a.k.a. horizontal vertical anisotropy (HVA)- and better in the lower than upper vertical meridian -a.k.a. vertical meridian asymmetry (VMA; Carrasco et al., Spatial Vision 2000, JOV 2002). We also know that for adults the speed of information accrual follows the same pattern, i.e. it is faster along the horizontal meridian and slowest at the North locations (Carrasco et al., VSS 2002). In this study, we investigated the developmental course of these asymmetries with children ages 5-12, by using stimuli of different levels of familiarity, such as shapes, letters and numbers. We used a 4AFC character identification task to determine the presence and extent of the HVA and VMA. Each trial consisted of a central fixation point followed by a 1 stimulus, presented for 50 ms. The stimulus appeared at one of 10 possible eccentricities, ranging from 4 to 13, along each of the 8 principal meridians. The brief display duration precluded eye movements, allowing us to equate field and retinal eccentricities. Results indicate that the HVA was present at all ages for all stimuli tested. Anatomical and physiological findings in macaque monkey provide a possible neural correlate for the visual constraints underlying the HVA. Surprisingly, the VMA did not emerge consistently in either adults or children for the different stimuli tested. This finding suggests that the visual constraints underlying the VMA reported before may play less of a role in our identification of more familiar stimuli. Studying the developmental course of visual field asymmetries helps elucidate the role that the environment plays in perceptual performance, and may have implications for human factors.

UR - http://www.scopus.com/inward/record.url?scp=4243128293&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4243128293&partnerID=8YFLogxK

U2 - 10.1167/3.9.501

DO - 10.1167/3.9.501

M3 - Article

VL - 3

JO - Journal of vision

JF - Journal of vision

SN - 1534-7362

IS - 9

ER -