Development of sensitization in the escape locomotion system in Aplysia

M. Stopfer, Thomas Carew

Research output: Contribution to journalArticle

Abstract

The development of several forms of nonassociative learning (habituation, dishabituation, and sensitization) has previously been examined in the gill and siphon withdrawal reflex of Aplysia. In the present study we analyzed the development of one of these forms of learning, sensitization, in a different response system in Aplysia, escape locomotion. A broad range of juvenile stages was examined: stages 10, 11, early 12, late 12, and 13 (early adult). We found that sensitization was completely absent in early developmental stages, not appearing until late stage 12. This stage of development is particularly interesting because it is at this same point that (1) sensitization first appears in the gill and siphon withdrawal reflex (Rankin and Carew, 1987), and (2) the cellular analog of sensitization first emerges in the CNS (the abdominal ganglion) of juvenile Aplysia (Nolen and Carew, 1987). The fact that sensitization emerges synchronously in the escape locomotion system and the gill withdrawal system is striking because the 2 response system differ markedly in their intrinsic developmental timetables, response topography, and underlying neural circuitry. Thus, the emergence of sensitization in both systems at the same late stage of juvenile development suggests the possibility that a single, unified process during development may be responsible for the simultaneous expression of sensitization.

Original languageEnglish (US)
Pages (from-to)223-230
Number of pages8
JournalJournal of Neuroscience
Volume8
Issue number1
StatePublished - 1988

Fingerprint

Aplysia
Locomotion
Reflex
Learning
Ganglia

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Development of sensitization in the escape locomotion system in Aplysia. / Stopfer, M.; Carew, Thomas.

In: Journal of Neuroscience, Vol. 8, No. 1, 1988, p. 223-230.

Research output: Contribution to journalArticle

@article{f068f7c3997146318fd25322315edaf5,
title = "Development of sensitization in the escape locomotion system in Aplysia",
abstract = "The development of several forms of nonassociative learning (habituation, dishabituation, and sensitization) has previously been examined in the gill and siphon withdrawal reflex of Aplysia. In the present study we analyzed the development of one of these forms of learning, sensitization, in a different response system in Aplysia, escape locomotion. A broad range of juvenile stages was examined: stages 10, 11, early 12, late 12, and 13 (early adult). We found that sensitization was completely absent in early developmental stages, not appearing until late stage 12. This stage of development is particularly interesting because it is at this same point that (1) sensitization first appears in the gill and siphon withdrawal reflex (Rankin and Carew, 1987), and (2) the cellular analog of sensitization first emerges in the CNS (the abdominal ganglion) of juvenile Aplysia (Nolen and Carew, 1987). The fact that sensitization emerges synchronously in the escape locomotion system and the gill withdrawal system is striking because the 2 response system differ markedly in their intrinsic developmental timetables, response topography, and underlying neural circuitry. Thus, the emergence of sensitization in both systems at the same late stage of juvenile development suggests the possibility that a single, unified process during development may be responsible for the simultaneous expression of sensitization.",
author = "M. Stopfer and Thomas Carew",
year = "1988",
language = "English (US)",
volume = "8",
pages = "223--230",
journal = "Journal of Neuroscience",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "1",

}

TY - JOUR

T1 - Development of sensitization in the escape locomotion system in Aplysia

AU - Stopfer, M.

AU - Carew, Thomas

PY - 1988

Y1 - 1988

N2 - The development of several forms of nonassociative learning (habituation, dishabituation, and sensitization) has previously been examined in the gill and siphon withdrawal reflex of Aplysia. In the present study we analyzed the development of one of these forms of learning, sensitization, in a different response system in Aplysia, escape locomotion. A broad range of juvenile stages was examined: stages 10, 11, early 12, late 12, and 13 (early adult). We found that sensitization was completely absent in early developmental stages, not appearing until late stage 12. This stage of development is particularly interesting because it is at this same point that (1) sensitization first appears in the gill and siphon withdrawal reflex (Rankin and Carew, 1987), and (2) the cellular analog of sensitization first emerges in the CNS (the abdominal ganglion) of juvenile Aplysia (Nolen and Carew, 1987). The fact that sensitization emerges synchronously in the escape locomotion system and the gill withdrawal system is striking because the 2 response system differ markedly in their intrinsic developmental timetables, response topography, and underlying neural circuitry. Thus, the emergence of sensitization in both systems at the same late stage of juvenile development suggests the possibility that a single, unified process during development may be responsible for the simultaneous expression of sensitization.

AB - The development of several forms of nonassociative learning (habituation, dishabituation, and sensitization) has previously been examined in the gill and siphon withdrawal reflex of Aplysia. In the present study we analyzed the development of one of these forms of learning, sensitization, in a different response system in Aplysia, escape locomotion. A broad range of juvenile stages was examined: stages 10, 11, early 12, late 12, and 13 (early adult). We found that sensitization was completely absent in early developmental stages, not appearing until late stage 12. This stage of development is particularly interesting because it is at this same point that (1) sensitization first appears in the gill and siphon withdrawal reflex (Rankin and Carew, 1987), and (2) the cellular analog of sensitization first emerges in the CNS (the abdominal ganglion) of juvenile Aplysia (Nolen and Carew, 1987). The fact that sensitization emerges synchronously in the escape locomotion system and the gill withdrawal system is striking because the 2 response system differ markedly in their intrinsic developmental timetables, response topography, and underlying neural circuitry. Thus, the emergence of sensitization in both systems at the same late stage of juvenile development suggests the possibility that a single, unified process during development may be responsible for the simultaneous expression of sensitization.

UR - http://www.scopus.com/inward/record.url?scp=0023830880&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023830880&partnerID=8YFLogxK

M3 - Article

C2 - 3339411

AN - SCOPUS:0023830880

VL - 8

SP - 223

EP - 230

JO - Journal of Neuroscience

JF - Journal of Neuroscience

SN - 0270-6474

IS - 1

ER -