Design of a biomimetic robotic fish controlled by a touch screen

Paul Phamduy, Raymond Le Grand, Maurizio Porfiri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Biomimetic robotic fish exhibits have been an attraction for many visitors in informal learning settings. Although these exhibits are entertaining to the visitors, they generally lack interactive components to promote participants' engagement. Interactivity in exhibits is an increasing trend in public educational venues, and is a crucial factor for promoting science learning among participants. In this work, we propose a novel platform for enhancing participant interaction through a robotic fish controlled by a touch screen device. Specifically, we develop and characterize a robotic fish based on a multi-link design with a pitch and buoyancy control system for three-dimensional biomimetic swimming. Performance tests are conducted to assess the robotic fish speed.

Original languageEnglish (US)
Title of host publicationDynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
PublisherAmerican Society of Mechanical Engineers
Volume2
ISBN (Print)9780791846193
DOIs
StatePublished - 2014
EventASME 2014 Dynamic Systems and Control Conference, DSCC 2014 - San Antonio, United States
Duration: Oct 22 2014Oct 24 2014

Other

OtherASME 2014 Dynamic Systems and Control Conference, DSCC 2014
CountryUnited States
CitySan Antonio
Period10/22/1410/24/14

Fingerprint

Touch screens
Biomimetics
Fish
Robotics
Buoyancy
Control systems

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Cite this

Phamduy, P., Le Grand, R., & Porfiri, M. (2014). Design of a biomimetic robotic fish controlled by a touch screen. In Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing (Vol. 2). [5842] American Society of Mechanical Engineers. https://doi.org/10.1115/DSCC2014-5842

Design of a biomimetic robotic fish controlled by a touch screen. / Phamduy, Paul; Le Grand, Raymond; Porfiri, Maurizio.

Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing. Vol. 2 American Society of Mechanical Engineers, 2014. 5842.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Phamduy, P, Le Grand, R & Porfiri, M 2014, Design of a biomimetic robotic fish controlled by a touch screen. in Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing. vol. 2, 5842, American Society of Mechanical Engineers, ASME 2014 Dynamic Systems and Control Conference, DSCC 2014, San Antonio, United States, 10/22/14. https://doi.org/10.1115/DSCC2014-5842
Phamduy P, Le Grand R, Porfiri M. Design of a biomimetic robotic fish controlled by a touch screen. In Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing. Vol. 2. American Society of Mechanical Engineers. 2014. 5842 https://doi.org/10.1115/DSCC2014-5842
Phamduy, Paul ; Le Grand, Raymond ; Porfiri, Maurizio. / Design of a biomimetic robotic fish controlled by a touch screen. Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing. Vol. 2 American Society of Mechanical Engineers, 2014.
@inproceedings{989e2f2fce6c44948e11486c9a16aea4,
title = "Design of a biomimetic robotic fish controlled by a touch screen",
abstract = "Biomimetic robotic fish exhibits have been an attraction for many visitors in informal learning settings. Although these exhibits are entertaining to the visitors, they generally lack interactive components to promote participants' engagement. Interactivity in exhibits is an increasing trend in public educational venues, and is a crucial factor for promoting science learning among participants. In this work, we propose a novel platform for enhancing participant interaction through a robotic fish controlled by a touch screen device. Specifically, we develop and characterize a robotic fish based on a multi-link design with a pitch and buoyancy control system for three-dimensional biomimetic swimming. Performance tests are conducted to assess the robotic fish speed.",
author = "Paul Phamduy and {Le Grand}, Raymond and Maurizio Porfiri",
year = "2014",
doi = "10.1115/DSCC2014-5842",
language = "English (US)",
isbn = "9780791846193",
volume = "2",
booktitle = "Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing",
publisher = "American Society of Mechanical Engineers",

}

TY - GEN

T1 - Design of a biomimetic robotic fish controlled by a touch screen

AU - Phamduy, Paul

AU - Le Grand, Raymond

AU - Porfiri, Maurizio

PY - 2014

Y1 - 2014

N2 - Biomimetic robotic fish exhibits have been an attraction for many visitors in informal learning settings. Although these exhibits are entertaining to the visitors, they generally lack interactive components to promote participants' engagement. Interactivity in exhibits is an increasing trend in public educational venues, and is a crucial factor for promoting science learning among participants. In this work, we propose a novel platform for enhancing participant interaction through a robotic fish controlled by a touch screen device. Specifically, we develop and characterize a robotic fish based on a multi-link design with a pitch and buoyancy control system for three-dimensional biomimetic swimming. Performance tests are conducted to assess the robotic fish speed.

AB - Biomimetic robotic fish exhibits have been an attraction for many visitors in informal learning settings. Although these exhibits are entertaining to the visitors, they generally lack interactive components to promote participants' engagement. Interactivity in exhibits is an increasing trend in public educational venues, and is a crucial factor for promoting science learning among participants. In this work, we propose a novel platform for enhancing participant interaction through a robotic fish controlled by a touch screen device. Specifically, we develop and characterize a robotic fish based on a multi-link design with a pitch and buoyancy control system for three-dimensional biomimetic swimming. Performance tests are conducted to assess the robotic fish speed.

UR - http://www.scopus.com/inward/record.url?scp=84929254110&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84929254110&partnerID=8YFLogxK

U2 - 10.1115/DSCC2014-5842

DO - 10.1115/DSCC2014-5842

M3 - Conference contribution

SN - 9780791846193

VL - 2

BT - Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing

PB - American Society of Mechanical Engineers

ER -