Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues

Florian Knoll, Kerstin Hammernik, Chi Zhang, Steen Moeller, Thomas Pock, Daniel K. Sodickson, Mehmet Akcakaya

    Research output: Contribution to journalArticle

    Abstract

    Following the success of deep learning in a wide range of applications, neural network-based machine-learning techniques have received interest as a means of accelerating magnetic resonance imaging (MRI). A number of ideas inspired by deeplearning techniques for computer vision and image processing have been successfully applied to nonlinear image reconstruction in the spirit of compressed sensing for both low-dose computed tomography and accelerated MRI. The additional integration of multicoil information to recover missing k-space lines in the MRI reconstruction process is studied less frequently, even though it is the de facto standard for the currently used accelerated MR acquisitions. This article provides an overview of the recent machine-learning approaches that have been proposed specifically for improving parallel imaging. A general background introduction to parallel MRI is given and structured around the classical view of image- and k-space-based methods. Linear and nonlinear methods are covered, followed by a discussion of the recent efforts to further improve parallel imaging using machine learning and, specifically, artificial neural networks. Image domain-based techniques that introduce improved regularizers are covered as well as k-space-based methods, where the focus is on better interpolation strategies using neural networks. Issues and open problems are discussed and recent efforts for producing open data sets and benchmarks for the community are examined.

    Original languageEnglish (US)
    Article number8962951
    Pages (from-to)128-140
    Number of pages13
    JournalIEEE Signal Processing Magazine
    Volume37
    Issue number1
    DOIs
    StatePublished - Jan 2020

    ASJC Scopus subject areas

    • Signal Processing
    • Electrical and Electronic Engineering
    • Applied Mathematics

    Fingerprint Dive into the research topics of 'Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues'. Together they form a unique fingerprint.

  • Cite this