Deep generative image models using a laplacian pyramid of adversarial networks

Emily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus

Research output: Contribution to journalConference article

Abstract

In this paper we introduce a generative parametric model capable of producing high quality samples of natural images. Our approach uses a cascade of convolutional networks within a Laplacian pyramid framework to generate images in a coarse-to-fine fashion. At each level of the pyramid, a separate generative convnet model is trained using the Generative Adversarial Nets (GAN) approach [11]. Samples drawn from our model are of significantly higher quality than alternate approaches. In a quantitative assessment by human evaluators, our CIFAR10 samples were mistaken for real images around 40% of the time, compared to 10% for samples drawn from a GAN baseline model. We also show samples from models trained on the higher resolution images of the LSUN scene dataset.

Original languageEnglish (US)
Pages (from-to)1486-1494
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume2015-January
StatePublished - Jan 1 2015
Event29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada
Duration: Dec 7 2015Dec 12 2015

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'Deep generative image models using a laplacian pyramid of adversarial networks'. Together they form a unique fingerprint.

  • Cite this